
From www.w3c.org 1 7/10/2003

SOAP Version 1.2 Part 0: Primer
W3C Recommendation 24 June 2003

This version:
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

Latest version:
http://www.w3.org/TR/soap12-part0/

Previous version:
http://www.w3.org/TR/2003/PR-soap12-part0-20030507/

Editor:
Nilo Mitra (Ericsson)

Please refer to the errata for this document, which may include some normative
corrections.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark, document use, and software licensing rules apply.

Abstract
SOAP Version 1.2 Part 0: Primer is a non-normative document intended to provide an
easily understandable tutorial on the features of the SOAP Version 1.2 specifications. In
particular, it describes the features through various usage scenarios, and is intended to
complement the normative text contained in Part 1 and Part 2 of the SOAP 1.2
specifications.

Status of this Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

From www.w3c.org 2 7/10/2003

This document is a Recommendation of the W3C. This document has been produced by
the XML Protocol Working Group, which is part of the Web Services Activity. It has been
reviewed by W3C Members and other interested parties, and has been endorsed by the
Director as a W3C Recommendation. It is a stable document and may be used as
reference material or cited as a normative reference from another document. W3C's role
in making the Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of the Web.

Comments on this document are welcome. Please send them to the public mailing-list
xmlp-comments@w3.org (archive). It is inappropriate to send discussion email to this
address.

Information about implementations relevant to this specification can be found in the
Implementation Report at
http://www.w3.org/2000/xp/Group/2/03/soap1.2implementation.html.

Patent disclosures relevant to this specification may be found on the Working Group's
patent disclosure page, in conformance with W3C policy.

A list of current W3C Recommendations and other technical reports can be found at
http://www.w3.org/TR.

Table of Contents

1. Introduction
1.1 Overview
1.2 Notational Conventions

2. Basic Usage Scenarios
2.1 SOAP Messages
2.2 SOAP Message Exchange

2.2.1 Conversational Message Exchanges
2.2.2 Remote Procedure Calls

2.3 Fault Scenarios
3. SOAP Processing Model

3.1 The "role" Attribute
3.2 The "mustUnderstand" Attribute
3.3 The "relay" Attribute

4. Using Various Protocol Bindings
4.1 The SOAP HTTP Binding

4.1.1 SOAP HTTP GET Usage
4.1.2 SOAP HTTP POST Usage
4.1.3 Web Architecture Compatible SOAP Usage

4.2 SOAP Over Email
5. Advanced Usage Scenarios

5.1 Using SOAP Intermediaries
5.2 Using Other Encoding Schemes

From www.w3c.org 3 7/10/2003

6. Changes Between SOAP 1.1 and SOAP 1.2
7. References
A. Acknowledgements

1. Introduction
SOAP Version 1.2 Part 0: Primer is a non-normative document intended to provide an
easily understandable tutorial on the features of the SOAP Version 1.2 specifications. Its
purpose is to help a technically competent person understand how SOAP may be used,
by describing representative SOAP message structures and message exchange patterns.

In particular, this primer describes the features of SOAP through various usage
scenarios, and is intended to complement the normative text contained in SOAP Version
1.2 Part 1: Messaging Framework (hereafter [SOAP Part1]) and SOAP Version 1.2 Part
2: Adjuncts (hereafter [SOAP Part2]) of the SOAP Version 1.2 specifications.

It is expected that the reader has some familiarity with the basic syntax of XML, including
the use of XML namespaces and infosets, and Web concepts such as URIs and HTTP. It
is intended primarily for users of SOAP, such as application designers, rather than
implementors of the SOAP specifications, although the latter may derive some benefit.
This primer aims at highlighting the essential features of SOAP Version 1.2, not at
completeness in describing every nuance or edge case. Therefore, there is no substitute
for the main specifications to obtain a fuller understanding of SOAP. To that end, this
primer provides extensive links to the main specifications wherever new concepts are
introduced or used.

[SOAP Part1] defines the SOAP envelope, which is a construct that defines an overall
framework for representing the contents of a SOAP message, identifying who should deal
with all or part of it, and whether handling such parts are optional or mandatory. It also
defines a protocol binding framework, which describes how the specification for a binding
of SOAP onto another underlying protocol may be written.

[SOAP Part2] defines a data model for SOAP, a particular encoding scheme for data
types which may be used for conveying remote procedure calls (RPC), as well as one
concrete realization of the underlying protocol binding framework defined in [SOAP
Part1]. This binding allows the exchange of SOAP messages either as payload of a
HTTP POST request and response, or as a SOAP message in the response to a HTTP
GET.

This document (the primer) is not normative, which means that it does not provide the
definitive specification of SOAP Version 1.2. The examples provided here are intended to
complement the formal specifications, and in any question of interpretation the formal
specifications naturally take precedence. The examples shown here provide a subset of
the uses expected for SOAP. In actual usage scenarios, SOAP will most likely be a part
of an overall solution, and there will no doubt be other application-specific requirements
which are not captured in these examples.

From www.w3c.org 4 7/10/2003

1.1 Overview
SOAP Version 1.2 provides the definition of the XML-based information which can be
used for exchanging structured and typed information between peers in a decentralized,
distributed environment. [SOAP Part1] explains that a SOAP message is formally
specified as an XML Infoset [XML Infoset], which provides an abstract description of its
contents. Infosets can have different on-the-wire representations, one common example
of which is as an XML 1.0 [XML 1.0] document.

SOAP is fundamentally a stateless, one-way message exchange paradigm, but
applications can create more complex interaction patterns (e.g., request/response,
request/multiple responses, etc.) by combining such one-way exchanges with features
provided by an underlying protocol and/or application-specific information. SOAP is silent
on the semantics of any application-specific data it conveys, as it is on issues such as the
routing of SOAP messages, reliable data transfer, firewall traversal, etc. However, SOAP
provides the framework by which application-specific information may be conveyed in an
extensible manner. Also, SOAP provides a full description of the required actions taken
by a SOAP node on receiving a SOAP message.

Section 2 of this document provides an introduction to the basic features of SOAP
starting with the simplest usage scenarios, namely a one-way SOAP message, followed
by various request-response type exchanges, including RPCs. Fault situations are also
described.

Section 3 provides an overview of the SOAP processing model, which describes the rules
for initial construction of a message, rules by which messages are processed when
received at an intermediary or ultimate destination, and rules by which portions of the
message can be inserted, deleted or modified by the actions of an intermediary.

Section 4 of this document describes the ways in which SOAP messages may be
transported to realize various usage scenarios. It describes the SOAP HTTP binding
specified in [SOAP Part2], as well as an example of how SOAP messages may be
conveyed in email messages. As a part of the HTTP binding, it introduces two message
exchange patterns which are available to an application, one of which uses the HTTP
POST method, while the other uses HTTP GET. Examples are also provided on how
RPCs, in particular those that represent "safe" information retrieval, may be represented
in SOAP message exchanges in a manner that is compatible with the architectural
principles of the World Wide Web .

Section 5 of this document provides a treatment of various aspects of SOAP that can be
used in more complex usage scenarios. These include the extensibility mechanism
offered through the use of header elements, which may be targeted at specific
intermediate SOAP nodes to provide value-added services to communicating
applications, and using various encoding schemes to serialize application-specific data in
SOAP messages.

From www.w3c.org 5 7/10/2003

Section 6 of this document describes the changes from SOAP Version 1.1 [SOAP 1.1].

Section 7 of this document provides references.

For ease of reference, terms and concepts used in this primer are hyper-linked to their
definition in the main specifications.

1.2 Notational Conventions
Throughout this primer, sample SOAP envelopes and messages are shown as [XML 1.0]
documents. [SOAP Part1] explains that a SOAP message is formally specified as an
[XML InfoSet], which is an abstract description of its contents. The distinction between
the SOAP XML Infosets and the documents is unlikely to be of interest to those using this
primer as an introduction to SOAP; those who do care (typically those who port SOAP to
new protocol bindings where the messages may have alternative representations) should
understand these examples as referring to the corresponding XML infosets. Further
elaboration of this point is provided in Section 4 of this document.

The namespace prefixes "env", "enc", and "rpc" used in the prose sections of this
document are associated with the SOAP namespace names
"http://www.w3.org/2003/05/soap-envelope" , "http://www.w3.org/2003/05/soap-
encoding", and "http://www.w3.org/2003/05/soap-rpc" respectively.

The namespace prefixes "xs" and "xsi" used in the prose sections of this document are
associated with the namespace names "http://www.w3.org/2001/XMLSchema" and
"http://www.w3.org/2001/XMLSchema-instance" respectively, both of which are defined in
the XML Schema specifications [XML Schema Part1], [XML Schema Part2].

Note that the choice of any other namespace prefix is arbitrary and not semantically
significant.

Namespace URIs of the general form "http://example.org/..." and "http://example.com/..."
represent an application-dependent or context-dependent URI [RFC 2396].

2. Basic Usage Scenarios
A SOAP message is fundamentally a one-way transmission between SOAP nodes, from
a SOAP sender to a SOAP receiver, but SOAP messages are expected to be combined
by applications to implement more complex interaction patterns ranging from
request/response to multiple, back-and-forth "conversational" exchanges.

The primer starts by exposing the structure of a SOAP message and its exchange in
some simple usage scenarios based on a travel reservation application. Various aspects
of this application scenario will be used throughout the primer. In this scenario, the travel
reservation application for an employee of a company negotiates a travel reservation with

From www.w3c.org 6 7/10/2003

a travel booking service for a planned trip. The information exchanged between the travel
reservation application and the travel service application is in the form of SOAP
messages.

The ultimate recipient of a SOAP message sent from the travel reservation application is
the travel service application, but it is possible that the SOAP message may be "routed"
through one or more SOAP intermediaries which act in some way on the message. Some
simple examples of such SOAP intermediaries might be ones that log, audit or, possibly,
amend each travel request. Examples, and a more detailed discussion of the behavior
and role of SOAP intermediaries, is postponed to section 5.1.

Section 2.1 describes a travel reservation request expressed as a SOAP message, which
offers the opportunity to describe the various "parts" of a SOAP message.

Section 2.2.1 continues the same scenario to show a response from the travel service in
the form of another SOAP message, which forms a part of a conversational message
exchange as the various choices meeting the constraints of the travel request are
negotiated.

Section 2.2.2 assumes that the various parameters of the travel reservation have been
accepted by the traveller, and an exchange - modelled as a remote procedure call (RPC)
- between the travel reservation and the travel service applications confirms the payment
for the reservation.

Section 2.3 shows examples of fault handling.

2.1 SOAP Messages
Example 1 shows data for a travel reservation expressed in a SOAP message.

Example 1
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>

From www.w3c.org 7 7/10/2003

 <p:departing>New York</p:departing>
 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid-morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>
</env:Envelope>

Sample SOAP message for a travel reservation containing header blocks and a body

The SOAP message in Example 1 contains two SOAP-specific sub-elements within the
overall env:Envelope, namely an env:Header and an env:Body. The contents of these
elements are application defined and not a part of the SOAP specifications, although the
latter do have something to say about how such elements must be handled.

A SOAP header element is optional, but it has been included in the example to explain
certain features of SOAP. A SOAP header is an extension mechanism that provides a
way to pass information in SOAP messages that is not application payload. Such
"control" information includes, for example, passing directives or contextual information
related to the processing of the message. This allows a SOAP message to be extended
in an application-specific manner. The immediate child elements of the env:Header
element are called header blocks, and represent a logical grouping of data which, as
shown later, can individually be targeted at SOAP nodes that might be encountered in the
path of a message from a sender to an ultimate receiver.

SOAP headers have been designed in anticipation of various uses for SOAP, many of
which will involve the participation of other SOAP processing nodes - called SOAP
intermediaries - along a message's path from an initial SOAP sender to an ultimate
SOAP receiver. This allows SOAP intermediaries to provide value-added services.
Headers, as shown later, may be inspected, inserted, deleted or forwarded by SOAP
nodes encountered along a SOAP message path. (It should be kept in mind, though, that
the SOAP specifications do not deal with what the contents of header elements are, or
how SOAP messages are routed between nodes, or the manner by which the route is
determined and so forth. These are a part of the overall application, and could be the
subject of other specifications.)

The SOAP body is the mandatory element within the SOAP env:Envelope, which implies
that this is where the main end-to-end information conveyed in a SOAP message must
be carried.

From www.w3c.org 8 7/10/2003

A pictorial representation of the SOAP message in Example 1 is as follows.

In Example 1, the header contains two header blocks, each of which is defined in its own
XML namespace and which represent some aspect pertaining to the overall processing of
the body of the SOAP message. For this travel reservation application, such "meta"
information pertaining to the overall request is a reservation header block which
provides a reference and time stamp for this instance of a reservation, and the traveller's
identity in the passenger block.

The header blocks reservation and passenger must be processed by the next SOAP
intermediary encountered in the message path or, if there is no intermediary, by the
ultimate recipient of the message. The fact that it is targeted at the next SOAP node
encountered en route is indicated by the presence of the attribute env:role with the value
"http://www.w3.org/2003/05/soap-envelope/role/next" (hereafter simply "next"), which is a
role that all SOAP nodes must be willing to play. The presence of an env:mustUnderstand
attribute with value "true" indicates that the node(s) processing the header must
absolutely process these header blocks in a manner consistent with their specifications,
or else not process the message at all and throw a fault. Note that whenever a header
block is processed, either because it is marked env:mustUnderstand="true" or for
another reason, the block must be processed in accordance with the specifications for

From www.w3c.org 9 7/10/2003

that block. Such header block specifications are application defined and not a part of
SOAP. Section 3 will elaborate further on SOAP message processing based on the
values of these attributes.

The choice of what data is placed in a header block and what goes in the SOAP body are
decisions taken at the time of application design. The main point to keep in mind is that
header blocks may be targeted at various nodes that might be encountered along a
message's path from a sender to the ultimate recipient. Such intermediate SOAP nodes
may provide value-added services based on data in such headers. In Example 1, the
passenger data is placed in a header block to illustrate the use of this data at a SOAP
intermediary to do some additional processing. For example, as shown later in section
5.1, the outbound message is altered by the SOAP intermediary by having the travel
policies pertaining to this passenger appended to the message as another header block.

The env:Body element and its associated child elements, itinerary and lodging, are
intended for exchange of information between the initial SOAP sender and the SOAP
node which assumes the role of the ultimate SOAP receiver in the message path, which
is the travel service application. Therefore, the env:Body and its contents are implicitly
targeted and are expected to be understood by the ultimate receiver. The means by
which a SOAP node assumes such a role is not defined by the SOAP specification, and
is determined as a part of the overall application semantics and associated message
flow.

Note that a SOAP intermediary may decide to play the role of the ultimate SOAP receiver
for a given message transfer, and thus process the env:Body. However, even though this
sort of a behavior cannot be prevented, it is not something that should be done lightly as
it may pervert the intentions of the message's sender, and have undesirable side effects
(such as not processing header blocks that might be targeted at intermediaries further
along the message path).

A SOAP message such as that in Example 1 may be transferred by different underlying
protocols and used in a variety of message exchange patterns. For example, for a Web-
based access to a travel service application, it could be placed in the body of a HTTP
POST request. In another protocol binding, it might be sent in an email message (see
section 4.2). Section 4 will describe how SOAP messages may be conveyed by a variety
of underlying protocols. For the time being, it is assumed that a mechanism exists for
message transfer and the remainder of this section concentrates on the details of the
SOAP messages and their processing.

2.2 SOAP Message Exchange
SOAP Version 1.2 is a simple messaging framework for transferring information specified
in the form of an XML infoset between an initial SOAP sender and an ultimate SOAP
receiver. The more interesting scenarios typically involve multiple message exchanges
between these two nodes. The simplest such exchange is a request-response pattern.
Some early uses of [SOAP 1.1] emphasized the use of this pattern as means for
conveying remote procedure calls (RPC), but it is important to note that not all SOAP

From www.w3c.org 10 7/10/2003

request-response exchanges can or need to be modelled as RPCs. The latter is used
when there is a need to model a certain programmatic behavior, with the exchanged
messages conforming to a pre-defined description of the remote call and its return.

A much larger set of usage scenarios than that covered by the request-response pattern
can be modeled simply as XML-based content exchanged in SOAP messages to form a
back-and-forth "conversation", where the semantics are at the level of the sending and
receiving applications. Section 2.2.1 covers the case of XML-based content exchanged in
SOAP messages between the travel reservation application and the travel service
application in a conversational pattern, while section 2.2.2 provides an example of an
exchange modeled as an RPC.

2.2.1 Conversational Message Exchanges

Continuing with the travel request scenario, Example 2 shows a SOAP message returned
from the travel service in response to the reservation request message in Example 1.
This response seeks to refine some information in the request, namely the choice of
airports in the departing city.

Example 2
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:35:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itineraryClarification
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>
 <p:airportChoices>
 JFK LGA EWR
 </p:airportChoices>
 </p:departing>
 </p:departure>
 <p:return>
 <p:arriving>
 <p:airportChoices>
 JFK LGA EWR
 </p:airportChoices>
 </p:arriving>
 </p:return>
 </p:itineraryClarification>
 </env:Body>

From www.w3c.org 11 7/10/2003

</env:Envelope>

SOAP message sent in response to the message in Example 1

As described earlier, the env:Body contains the primary content of the message, which in
this example includes a list of the various alternatives for the airport, conforming to a
schema definition in the XML namespace
http://travelcompany.example.org/reservation/travel. In this example, the header blocks
from Example 1 are returned (with some sub-element values altered) in the response.
This could allow message correlation at the SOAP level, but such headers are very likely
to also have other application-specific uses.

The message exchange in Examples 1 and 2 are cases where XML-based content
conforming to some application-defined schema are exchanged via SOAP messages.
Once again, a discussion of the means by which such messages are transferred is
deferred to section 4.

It is easy enough to see how such exchanges can build up to a multiple back-and-forth
"conversational" message exchange pattern. Example 3 shows a SOAP message sent by
the travel reservation application in response to that in Example 2 choosing one from the
list of available airports. The header block reservation with the same value of the
reference sub-element accompanies each message in this conversation, thereby offering
a way, should it be needed, to correlate the messages exchanged between them at the
application level.

Example 3
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation
 xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:36:50.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>LGA</p:departing>
 </p:departure>
 <p:return>
 <p:arriving>EWR</p:arriving>
 </p:return>
 </p:itinerary>
 </env:Body>

From www.w3c.org 12 7/10/2003

</env:Envelope>

Response to the message in Example 2 continuing a conversational message exchange

2.2.2 Remote Procedure Calls

One of the design goals of SOAP Version 1.2 is to encapsulate remote procedure call
functionality using the extensibility and flexibility of XML. SOAP Part 2 section 4 has
defined a uniform representation for RPC invocations and responses carried in SOAP
messages. This section continues with the travel reservation scenario to illustrate the use
of SOAP messages to convey remote procedure calls and their return.

To that end, the next example shows the payment for the trip using a credit card. (It is
assumed that the conversational exchanges described in section 2.2.1 have resulted in a
confirmed itinerary.) Here, it is further assumed that the payment happens in the context
of an overall transaction where the credit card is charged only when the travel and the
lodging (not shown in any example, but presumably reserved in a similar manner) are
both confirmed. The travel reservation application provides credit card information and
the successful completion of the different activities results in the card being charged and
a reservation code returned. This reserve-and-charge interaction between the travel
reservation application and the travel service application is modeled as a SOAP RPC.

To invoke a SOAP RPC, the following information is needed:

1. The address of the target SOAP node.
2. The procedure or method name.
3. The identities and values of any arguments to be passed to the procedure or

method together with any output parameters and return value.
4. A clear separation of the arguments used to identify the Web resource which is the

actual target for the RPC, as contrasted with those that convey data or control
information used for processing the call by the target resource.

5. The message exchange pattern which will be employed to convey the RPC,
together with an identification of the so-called "Web Method" (on which more later)
to be used.

6. Optionally, data which may be carried as a part of SOAP header blocks.

Such information may be expressed by a variety of means, including formal Interface
Definition Languages (IDL). Note that SOAP does not provide any IDL, formal or informal.
Note also that the above information differs in subtle ways from information generally
needed to invoke other, non-SOAP RPCs.

Regarding Item 1 above, there is, from a SOAP perspective, a SOAP node which
"contains" or "supports" the target of the RPC. It is the SOAP node which (appropriately)
adopts the role of the ultimate SOAP receiver. As required by Item 1, the ultimate
recipient can identify the target of the named procedure or method by looking for its URI.
The manner in which the target URI is made available depends on the underlying
protocol binding. One possibility is that the URI identifying the target is carried in a SOAP
header block. Some protocol bindings, such as the SOAP HTTP binding defined in

From www.w3c.org 13 7/10/2003

[SOAP Part2], offer a mechanism for carrying the URI outside the SOAP message. In
general, one of the properties of a protocol binding specification must be a description of
how the target URI is carried as a part of the binding. Section 4.1 provides some concrete
examples of how the URI is carried in the case of the standardized SOAP protocol
binding to HTTP.

Item 4 and Item 5 above are required to ensure that RPC applications that employ SOAP
can do so in a manner which is compatible with the architectural principles of the World
Wide Web. Section 4.1.3 discusses how the information provided by items 4 and 5 are
utilized.

For the remainder of this section, it is assumed that the RPC conveyed in a SOAP
message as shown in Example 4 is appropriately targeted and dispatched. The purpose
of this section is to highlight the syntactical aspects of RPC requests and returns carried
within a SOAP message.

Example 4
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true" >5</t:transaction>
 </env:Header>
 <env:Body>
 <m:chargeReservation
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation">
 <m:code>FT35ZBQ</m:code>
 </m:reservation>
 <o:creditCard xmlns:o="http://mycompany.example.com/financial">
 <n:name xmlns:n="http://mycompany.example.com/employees">
 Åke Jógvan Øyvind
 </n:name>
 <o:number>123456789099999</o:number>
 <o:expiration>2005-02</o:expiration>
 </o:creditCard>
 </m:chargeReservation>
 </env:Body>
</env:Envelope>

SOAP RPC request with a mandatory header and two input (or "in") parameters

The RPC itself is carried as a child of the env:Body element, and is modelled as a struct
which takes the name of the procedure or method, in this case chargeReservation. (A
struct is a concept from the SOAP Data Model defined in [SOAP Part2] that models a
structure or record type that occurs in some common programming languages.) The
design of the RPC in the example (whose formal description has not been explicitly
provided) takes two input (or "in") parameters, the reservation corresponding to the
planned trip identified by the reservation code, and the creditCard information. The latter
is also a struct, which takes three elements, the card holder's name, the card number and

From www.w3c.org 14 7/10/2003

an expiration date.

In this example, the env:encodingStyle attribute with the value
http://www.w3.org/2003/05/soap-encoding shows that the contents of the
chargeReservation structure have been serialized according to the SOAP encoding rules,
i.e., the particular rules defined in SOAP Part 2 section 3. Even though SOAP specifies
this particular encoding scheme, its use is optional and the specification makes clear that
other encoding schemes may be used for application-specific data within a SOAP
message. It is for this purpose that it provides the env:encodingStyle attribute to qualify
header blocks and body sub-elements. The choice of the value for this attribute is an
application-specific decision and the ability of a caller and callee to interoperate is
assumed to have been settled "out-of-band". Section 5.2 shows an example of using
another encoding scheme.

As noted in Item 6 above, RPCs may also require additional information to be carried,
which can be important for the processing of the call in a distributed environment, but
which are not a part of the formal procedure or method description. (Note, however, that
providing such additional contextual information is not specific to RPCs, but may be
required in general for the processing of any distributed application.) In the example, the
RPC is carried out in the context of an overall transaction which involves several activities
which must all complete successfully before the RPC returns successfully. Example 4
shows how a header block transaction directed at the ultimate recipient (implied by the
absence of the env:role attribute) is used to carry such information. (The value "5" is
some transaction identifier set by and meaningful to the application. No further
elaboration of the application-specific semantics of this header are provided here, as it is
not germane to the discussion of the syntactical aspects of SOAP RPC messages.)

Let us assume that the RPC in the charging example has been designed to have the
procedure description which indicates that there are two output (or "out") parameters, one
providing the reference code for the reservation and the other a URL where the details of
the reservation may be viewed. The RPC response is returned in the env:Body element of
a SOAP message, which is modeled as a struct taking the procedure name
chargeReservation and, as a convention, the word "Response" appended. The two
output (or "out") parameters accompanying the response are the alphanumeric code
identifying the reservation in question, and a URI for the location, viewAt, from where the
reservation may be retrieved.

This is shown in Example 5a, where the header again identifies the transaction within
which this RPC is performed.

Example 5a
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true">5</t:transaction>
 </env:Header>

From www.w3c.org 15 7/10/2003

 <env:Body>
 <m:chargeReservationResponse
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:code>FT35ZBQ</m:code>
 <m:viewAt>
 http://travelcompany.example.org/reservations?code=FT35ZBQ
 </m:viewAt>
 </m:chargeReservationResponse>
 </env:Body>
</env:Envelope>

RPC response with two output (or "out") parameters for the call shown in Example 4

RPCs often have descriptions where a particular output parameter is distinguished, the
so-called "return" value. The SOAP RPC convention offers a way to distinguish this
"return" value from the other output parameters in the procedure description. To show
this, the charging example is modified to have an RPC description that is almost the
same as that for Example 5a, i.e, with the same two "out" parameters, but in addition it
also has a "return" value, which is an enumeration with potential values of "confirmed"
and "pending". The RPC response conforming to this description is shown in Example 5b,
where the SOAP header, as before, identifies the transaction within which this RPC is
performed.

Example 5b
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true">5</t:transaction>
 </env:Header>
 <env:Body>
 <m:chargeReservationResponse
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:rpc="http://www.w3.org/2003/05/soap-rpc"
 xmlns:m="http://travelcompany.example.org/">
 <rpc:result>m:status</rpc:result>
 <m:status>confirmed</m:status>
 <m:code>FT35ZBQ</m:code>
 <m:viewAt>
 http://travelcompany.example.org/reservations?code=FT35ZBQ
 </m:viewAt>
 </m:chargeReservationResponse>
 </env:Body>
</env:Envelope>

RPC response with a "return" value and two "out" parameters for the call shown in
Example 4

In Example 5b, the return value is identified by the element rpc:result, and contains the
XML Qualified Name (of type xs:QName) of another element within the struct which is
m:status. This, in turn, contains the actual return value, "confirmed". This technique
allows the actual return value to be strongly typed according to some schema. If the

From www.w3c.org 16 7/10/2003

rpc:result element is absent, as is the case in Example 5a, the return value is not
present or is of the type void.

While, in principle, using SOAP for RPC is independent of the decision to use a particular
means for transferring the RPC call and its return, certain protocol bindings that support
the SOAP Request-Response message exchange pattern may be more naturally suited
for such purposes. A protocol binding supporting this message exchange pattern can
provide the correlation between a request and a response. Of course, the designer of an
RPC-based application could choose to put a correlation ID relating a call and its return in
a SOAP header, thereby making the RPC independent of any underlying transfer
mechanism. In any case, application designers have to be aware of all the characteristics
of the particular protocols chosen for transferring SOAP RPCs, such as latency,
synchrony, etc.

In the commonly used case, standardized in SOAP Part 2 section 7, of using HTTP as
the underlying transfer protocol, an RPC invocation maps naturally to the HTTP request
and an RPC response maps to the HTTP response. Section 4.1 provides examples of
carrying RPCs using the HTTP binding.

However, it is worth keeping in mind that even though most examples of SOAP for RPC
use the HTTP protocol binding, it is not limited to that means alone.

2.3 Fault Scenarios
SOAP provides a model for handling situations when faults arise in the processing of a
message. SOAP distinguishes between the conditions that result in a fault, and the ability
to signal that fault to the originator of the faulty message or another node. The ability to
signal the fault depends on the message transfer mechanism used, and one aspect of
the binding specification of SOAP onto an underlying protocol is to specify how faults are
signalled, if at all. The remainder of this section assumes that a transfer mechanism is
available for signalling faults generated while processing received messages, and
concentrates on the structure of the SOAP fault message.

The SOAP env:Body element has another distinguished role in that it is the place where
such fault information is placed. The SOAP fault model (see SOAP Part 1, section 2.6)
requires that all SOAP-specific and application-specific faults be reported using a single
distinguished element, env:Fault, carried within the env:Body element. The env:Fault
element contains two mandatory sub-elements, env:Code and env:Reason, and
(optionally) application-specific information in the env:Detail sub-element. Another
optional sub-element, env:Node, identifies via a URI the SOAP node which generated the
fault, its absence implying that it was the ultimate recipient of the message which did so.
There is yet another optional sub-element, env:Role, which identifies the role being
played by the node which generated the fault.

The env:Code sub-element of env:Fault is itself made up of a mandatory env:Value sub-
element, whose content is specified in the SOAP specification (see SOAP Part 1 section
5.4.6) as well as an optional env:Subcode sub-element.

From www.w3c.org 17 7/10/2003

Example 6a shows a SOAP message returned in response to the RPC request in
Example 4, and indicating a failure to process the RPC.

Example 6a
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:rpc='http://www.w3.org/2003/05/soap-rpc'>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>rpc:BadArguments</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en-US">Processing error</env:Text>
 <env:Text xml:lang="cs">Chyba zpracování</env:Text>
 </env:Reason>
 <env:Detail>
 <e:myFaultDetails
 xmlns:e="http://travelcompany.example.org/faults">
 <e:message>Name does not match card number</e:message>
 <e:errorcode>999</e:errorcode>
 </e:myFaultDetails>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Sample SOAP message indicating failure to process the RPC in Example 4

In Example 6a, the top-level env:Value uses a standardized XML Qualified Name (of type
xs:QName) to identify that it is an env:Sender fault, which indicates that it is related to
some syntactical error or inappropriate information in the message. (When a env:Sender
fault is received by the sender, it is expected that some corrective action is taken before a
similar message is sent again.) The env:Subcode element is optional, and, if present, as it
is in this example, qualifies the parent value further. In Example 6a, the env:Subcode
denotes that an RPC specific fault, rpc:BadArguments, defined in SOAP Part 2 section
4.4, is the cause of the failure to process the request.

The structure of the env:Subcode element has been chosen to be hierarchical - each child
env:Subcode element has a mandatory env:Value and an optional env:Subcode sub-
element - to allow application-specific codes to be carried. This hierarchical structure of
the env:Code element allows for an uniform mechanism for conveying multiple level of
fault codes. The top-level env:Value is a base fault that is specified in the SOAP Version
1.2 specifications (see SOAP Part 1 section 5.4.6) and must be understood by all SOAP
nodes. Nested env:Values are application-specific, and represent further elaboration or
refinement of the base fault from an application perspective. Some of these values may
well be standardized, such as the RPC codes standardized in SOAP 1.2 (see SOAP Part
2 section 4.4), or in some other standards that use SOAP as an encapsulation protocol.
The only requirement for defining such application-specific subcode values is that they be

From www.w3c.org 18 7/10/2003

namespace qualified using any namespace other than the SOAP env namespace which
defines the main classifications for SOAP faults. There is no requirement from a SOAP
perspective that applications need to understand, or even look at all levels of the subcode
values.

The env:Reason sub-element is not meant for algorithmic processing, but rather for
human understanding; so, even though this is a mandatory item, the chosen value need
not be standardized. Therefore all that is required is that it reasonably accurately
describe the fault situation. It must have one or more env:Text sub-elements, each with a
unique xml:lang attribute, which allows applications to make the fault reason available in
multiple languages. (Applications could negotiate the language of the fault text using a
mechanism built using SOAP headers; however this is outside the scope of the SOAP
specifications.)

The absence of a env:Node sub-element within env:Fault in Example 6a implies that it is
generated by the ultimate receiver of the call. The contents of env:Detail, as shown in
the example, are application-specific.

During the processing of a SOAP message, a fault may also be generated if a mandatory
header element is not understood or the information contained in it cannot be processed.
Errors in processing a header block are also signalled using a env:Fault element within
the env:Body, but with a particular distinguished header block, env:NotUnderstood, that
identifies the offending header block.

Example 6b shows an example of a response to the RPC in Example 4 indicating a
failure to process the t:transaction header block. Note the presence of the
env:MustUnderstand fault code in the env:Body, and the identification of the header not
understood using an (unqualified) attribute, qname, in the special (empty) header block
env:NotUnderstood.

Example 6b
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope>
 <env:Header>
 <env:NotUnderstood qname="t:transaction"
 xmlns:t="http://thirdparty.example.org/transaction"/>
 </env:Header>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:MustUnderstand</env:Value>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en-US">Header not understood</env:Text>
 <env:Text xml:lang="fr">En-tête non compris</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

Sample SOAP message indicating failure to process the header block in Example 4

From www.w3c.org 19 7/10/2003

If there were several mandatory header blocks that were not understood, then each could
be identified by its qname attribute in a series of such env:NotUnderstood header blocks.

3. SOAP Processing Model
Having established the various syntactical aspects of a SOAP message as well as some
basic message exchange patterns, this section provides a general overview of the SOAP
processing model (specified in SOAP Part 1, section 2). The SOAP processing model
describes the actions taken by a SOAP node on receiving a SOAP message.

Example 7a shows a SOAP message with several header blocks (with their contents
omitted for brevity). Variations of this will be used in the remainder of this section to
illustrate various aspects of the processing model.

Example 7a
<?xml version="1.0" ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <p:oneBlock xmlns:p="http://example.com"
 env:role="http://example.com/Log">
 ...
 ...
 </p:oneBlock>
 <q:anotherBlock xmlns:q="http://example.com"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next">
 ...
 ...
 </q:anotherBlock>
 <r:aThirdBlock xmlns:r="http://example.com">
 ...
 ...
 </r:aThirdBlock>
 </env:Header>
 <env:Body >
 ...
 ...
 </env:Body>
 </env:Envelope>

SOAP message showing a variety of header blocks

The SOAP processing model describes the (logical) actions taken by a SOAP node on
receiving a SOAP message. There is a requirement for the node to analyze those parts
of a message that are SOAP-specific, namely those elements in the SOAP "env"
namespace. Such elements are the envelope itself, the header element and the body
element. A first step is, of course, the overall check that the SOAP message is
syntactically correct. That is, it conforms to the SOAP XML infoset subject to the
restrictions on the use of certain XML constructs - Processing Instructions and Document
Type Definitions - as defined in SOAP Part 1, section 5.

From www.w3c.org 20 7/10/2003

3.1 The "role" Attribute
Further processing of header blocks and the body depend on the role(s) assumed by the
SOAP node for the processing of a given message. SOAP defines the (optional)
env:role attribute - syntactically, xs:anyURI - that may be present in a header block,
which identifies the role played by the intended target of that header block. A SOAP node
is required to process a header block if it assumes the role identified by the value of the
URI. How a SOAP node assumes a particular role is not a part of the SOAP
specifications.

Three standardized roles have been defined (see SOAP Part 1, section 2.2), which are

! "http://www.w3.org/2003/05/soap-envelope/role/none" (hereafter simply "none")
! "http://www.w3.org/2003/05/soap-envelope/role/next" (hereafter simply "next"), and
! "http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver" (hereafter simply

"ultimateReceiver").

In Example 7a, the header block oneBlock is targeted at any SOAP node that plays the
application-defined role defined by the URI http://example.com/Log. For purposes of
illustration, it is assumed that the specification for such a header block requires that any
SOAP node adopting this role log the entire message.

Every SOAP node receiving a message with a header block that has a env:role attribute
of "next" must be capable of processing the contents of the element, as this is a
standardized role that every SOAP node must be willing to assume. A header block thus
attributed is one which is expected to be examined and (possibly) processed by the next
SOAP node along the path of a message, assuming that such a header has not been
removed as a result of processing at some node earlier in the message path.

In Example 7a, the header block anotherBlock is targeted at the next node in the
message path. In this case, the SOAP message received by the node playing the
application-defined role of "http://example.com/Log", must also be willing to play the
SOAP-defined role of "next". This is also true for the node which is the ultimate recipient
of the message, as it obviously (and implicitly) also plays the "next" role by virtue of being
next in the message path.

The third header block, aThirdBlock, in Example 7a does not have the env:role attribute.
It is targeted at a SOAP node which assumes the "ultimateReceiver" role. The
"ultimateReceiver" role (which can be explicitly declared or is implicit if the env:role
attribute is absent in a header block) is played by a SOAP node that assumes the role of
the ultimate recipient of a particular SOAP message. The absence of a env:role attribute
in the aThirdBlock header block means that this header element is targeted at the SOAP
node that assumes the "ultimateReceiver" role.

Note that the env:Body element does not have a env:role attribute. The body element is
always targeted at the SOAP node that assumes the "ultimateReceiver" role. In that

From www.w3c.org 21 7/10/2003

sense, the body element is just like a header block targeted at the ultimate receiver, but it
has been distinguished to allow for SOAP nodes (typically SOAP intermediaries) to skip
over it if they assume roles other than that of the ultimate receiver. SOAP does not
prescribe any structure for the env:Body element, except that it recommends that any
sub-elements be XML namespace qualified. Some applications, such as that in Example
1, may choose to organize the sub-elements of env:Body in blocks, but this is not of
concern to the SOAP processing model.

The other distinguished role for the env:Body element, as the container where information
on SOAP-specific faults, i.e., failure to process elements of a SOAP message, is placed
has been described previously in section 2.3.

If a header element has the standardized env:role attribute with value "none", it means
that no SOAP node should process the contents, although a node may need to examine
it if the content are data referenced by another header element that is targeted at the
particular SOAP node.

If the env:role attribute has an empty value, i.e., env:role="", it means that the relative
URI identifying the role is resolved to the base URI for the SOAP message in question.
SOAP Version 1.2 does not define a base URI for a SOAP message, but defers to the
mechanisms defined in [XMLBase] for deriving the base URI, which can be used to make
any relative URIs absolute. One such mechanism is for the protocol binding to establish a
base URI, possibly by reference to the encapsulating protocol in which the SOAP
message is embedded for transport. (In fact, when SOAP messages are transported
using HTTP, SOAP Part 2 section 7.1.2 defines the base URI as the Request-URI of the
HTTP request, or the value of the HTTP Content-Location header.)

The following table summarizes the applicable standardized roles that may be assumed
at various SOAP nodes. ("Yes" and "No" means that the corresponding node does or
does not, respectively, play the named role.)

3.2 The "mustUnderstand" Attribute
Example 7b augments the previous example by introducing another (optional) attribute
for header blocks, the env:mustUnderstand attribute.

Example 7b
<?xml version="1.0" ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>

Role absent "none" "next" "ultimateReceiver"
Node
initial sender not applicable not applicable not applicable not applicable
intermediary no no yes no
ultimate receiver yes no yes yes

From www.w3c.org 22 7/10/2003

 <p:oneBlock xmlns:p="http://example.com"
 env:role="http://example.com/Log"
 env:mustUnderstand="true">
 ...
 ...
 </p:oneBlock>
 <q:anotherBlock xmlns:q="http://example.com"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next">
 ...
 ...
 </q:anotherBlock>
 <r:aThirdBlock xmlns:r="http://example.com">
 ...
 ...
 </r:aThirdBlock>
 </env:Header>
 <env:Body >
 ...
 ...
 </env:Body>
 </env:Envelope>

SOAP message showing a variety of header blocks, one of which is mandatory for
processing

After a SOAP node has correctly identified the header blocks (and possibly the body)
targeted at itself using the env:role attribute, the additional attribute,
env:mustUnderstand, in the header elements determines further processing actions that
have to be taken. In order to ensure that SOAP nodes do not ignore header blocks which
are important to the overall purpose of the application, SOAP header blocks also provide
for the additional optional attribute, env:mustUnderstand, which, if "true", means that the
targeted SOAP node must process the block according to the specification of that block.
Such a block is colloquially referred to as a mandatory header block. In fact, processing
of the SOAP message must not even start until the node has identified all the mandatory
header blocks targeted at itself, and "understood" them. Understanding a header means
that the node must be prepared to do whatever is described in the specification of that
block. (Keep in mind that the specifications of header blocks are not a part of the SOAP
specifications.)

In Example 7b, the header block oneBlock is marked with a env:mustUnderstand value
set to "true", which means that it is mandatory to process this block if the SOAP node
plays the role identified by "http://example.com/Log". The other two header blocks are not
so marked, which means that SOAP node at which these blocks are targeted need not
process them. (Presumably the specifications for these blocks allow for this.)

A env:mustUnderstand value of "true" means that the SOAP node must process the
header with the semantics described in that header's specification, or else generate a
SOAP fault. Processing the header appropriately may include removing the header from
any generated SOAP message, reinserting the header with the same or altered value, or
inserting a new header. The inability to process a mandatory header requires that all
further processing of the SOAP message cease, and a SOAP fault be generated. The
message is not forwarded any further.

From www.w3c.org 23 7/10/2003

The env:Body element has no env:mustUnderstand attribute but it must be processed by
the ultimate recipient. In Example 7b, the ultimate recipient of the message - the SOAP
node which plays the "ultimateReceiver" role - must process the env:Body and may
process the header block aThirdBlock. It may also process the header block
anotherBlock, as it is targeted at it (in the role of "next") but it is not mandatory to do so if
the specifications for processing the blocks do not demand it. (If the specification for
anotherBlock demanded that it must be processed at the next recipient, it would have
required that it be marked with a env:mustUnderstand="true".)

The role(s) a SOAP node plays when processing a SOAP message can be determined
by many factors. The role could be known a priori, or set by some out-of-band means, or
a node can inspect all parts of a received message to determine which roles it will
assume before processing the message. An interesting case arises when a SOAP node,
during the course of processing a message, decides that there are additional roles that it
needs to adopt. No matter when this determination is made, externally it must appear as
though the processing model has been adhered to. That is, it must appear as though the
role had been known from the start of the processing of the message. In particular, the
external appearance must be that the env:mustUnderstand checking of any headers with
those additional roles assumed was performed before any processing began. Also, if a
SOAP node assumes such additional roles, it must ensure that it is prepared to do
everything that the specifications for those roles require.

The following table summarizes how the processing actions for a header block are
qualified by the env:mustUnderstand attribute with respect to a node that has been
appropriately targeted (via the env:role attribute).

As a result of processing a SOAP message, a SOAP node may generate a single SOAP
fault if it fails to process a message, or, depending on the application, generate additional
SOAP messages for consumption at other SOAP nodes. SOAP Part 1 section 5.4
describes the structure of the fault message while the SOAP processing model defines
the conditions under which it is generated. As illustrated previously in section 2.3, a
SOAP fault is a SOAP message with a standardized env:Body sub-element named
env:Fault.

SOAP makes a distinction between generating a fault and ensuring that the fault is
returned to the originator of the message or to another appropriate node which can
benefit from this information. However, whether a generated fault can be propagated
appropriately depends on the underlying protocol binding chosen for the SOAP message
message exchange. The specification does not define what happens if faults are

Node intermediary ultimate receiver
mustUnderstand
"true" must process must process
"false" may process may process
absent may process may process

From www.w3c.org 24 7/10/2003

generated during the propagation of one-way messages. The only normative underlying
protocol binding, which is the SOAP HTTP binding, offers the HTTP response as a
means for reporting a fault in the incoming SOAP message. (See Section 4 for more
details on SOAP protocol bindings.)

3.3 The "relay" Attribute
SOAP Version 1.2 defines another optional attribute for header blocks, env:relay of type
xs:boolean, which indicates if a header block targeted at a SOAP intermediary must be
relayed if it is not processed.

Note that if a header block is processed, the SOAP processing rules (see SOAP Part 1
section 2.7.2) requires that it be removed from the outbound message. (It may, however,
be reinserted, either unchanged or with its contents altered, if the processing of other
header blocks determines that the header block be retained in the forwarded message.)
The default behavior for an unprocessed header block targeted at a role played by a
SOAP intermediary is that it must be removed before the message is relayed.

The reason for this choice of default is to lean on the side of safety by ensuring that a
SOAP intermediary make no assumptions about the survivability past itself of a header
block targeted at a role it assumes, and representing some value-added feature,
particularly if it chooses not to process the header block, very likely because it does not
"understand" it. That is because certain header blocks represent hop-by-hop features,
and it may not make sense to unknowingly propagate it end-to-end. As an intermediary
may not be in a position to make this determination, it was thought that it would be safer if
unprocessed header blocks were removed before the message was relayed.

However, there are instances when an application designer would like to introduce a new
feature, manifested through a SOAP header block, targeted at any capable intermediary
which might be encountered in the SOAP message path. Such a header block would be
available to those intermediaries that "understood" it, but ignored and relayed onwards by
those that did not. Being a new feature, the processing software for this header block
may be implemented, at least initially, in some but not all SOAP nodes. Marking such a
header block with env:mustUnderstand = "false" is obviously needed, so that
intermediaries that have not implemented the feature do not generate a fault. To
circumvent the default rule of the processing model, marking a header block with the
additional attribute env:relay with the value "true" allows the intermediary to forward the
header block targeted at itself in the event that it chooses not to process it.

Targeting the header block at the role "next" together with the env:relay attribute set to
"true" can always serve to ensure that each intermediary has a chance to examine the
header, because one of the anticipated uses of the "next" role is with header blocks that
carry information that are expected to persist along a SOAP message path. Of course,
the application designer can always define a custom role that allows targetting at specific
intermediaries that assume this role. Therefore, there is no restriction on the use of the
env:relay attribute with any role except of course the roles of "none" and
"ultimateReceiver", for which it is meaningless.

From www.w3c.org 25 7/10/2003

Example 7c shows the use of the env:relay attribute.

Example 7c
<?xml version="1.0" ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <p:oneBlock xmlns:p="http://example.com"
 env:role="http://example.com/Log"
 env:mustUnderstand="true">
 ...
 ...
 </p:oneBlock>
 <q:anotherBlock xmlns:q="http://example.com"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:relay="true">
 ...
 ...
 </q:anotherBlock>
 <r:aThirdBlock xmlns:r="http://example.com">
 ...
 ...
 </r:aThirdBlock>
 </env:Header>
 <env:Body >
 ...
 ...
 </env:Body>
 </env:Envelope>

SOAP message showing a variety of header blocks, one of which must be relayed if
unprocessed.

The header block q:anotherBlock, targeted at the "next" node in the message path, has
the additional attribute env:relay="true". A SOAP node receiving this message may
process this header block if it "understands" it, but if it does so the processing rules
require that this header block be removed before forwarding. However, if the SOAP node
chooses to ignore this header block, which it can because it is not mandatory to process
it, as indicated by the absence of the env:mustUnderstand attribute, then it must forward
it.

Processing the header block p:oneBlock is mandatory and the SOAP processing rules
require that it not be relayed, unless the processing of some other header block requires
that it be present in the outbound message. The header block r:aThirdBlock does not
have an env:relay attribute, which is equivalent to having it with the value
env:relay="false". Hence, this header is not forwarded if it is not processed.

SOAP 1.2 Part 1 Table 3 summarizes the conditions which determine when a SOAP
intermediary assuming a given role is allowed to forward unprocessed header blocks.

4. Using Various Protocol Bindings

From www.w3c.org 26 7/10/2003

SOAP messages may be exchanged using a variety of "underlying" protocols, including
other application layer protocols. The specification of how SOAP messages may be
passed from one SOAP node to another using an underlying protocol is called a SOAP
binding. [SOAP Part1] defines a SOAP message in the form of an [XML Infoset], i.e., in
terms of element and attribute information items of an abstract "document" called the
env:Envelope (see SOAP Part 1, section 5). Any SOAP env:Envelope infoset
representation will be made concrete through a protocol binding, whose task, among
other things, it is to provide a serialized representation of the infoset that can be
conveyed to the next SOAP node in the message path in a manner such that the infoset
can be reconstructed without loss of information. In typical examples of SOAP messages,
and certainly in all the examples in this primer, the serialization shown is that of a well-
formed [XML 1.0] document. However, there may be other protocol bindings - for
example a protocol binding between two SOAP nodes over a limited bandwidth interface
- where an alternative, compressed serialization of the same infoset may be chosen.
Another binding, chosen for a different purpose, may provide a serialization which is an
encrypted structure representing the same infoset.

In addition to providing a concrete realization of a SOAP infoset between adjacent SOAP
nodes along a SOAP message path, a protocol binding provides the mechanisms to
support features that are needed by a SOAP application. A feature is a specification of a
certain functionality provided by a binding. A feature description is identified by a URI, so
that all applications referencing it are assured of the same semantics. For example, a
typical usage scenario might require many concurrent request-response exchanges
between adjacent SOAP nodes, in which case the feature that is required is the ability to
correlate a request with a response. Other examples includes "an encrypted channel"
feature, or a "reliable delivery channel" feature, or a particular SOAP message exchange
pattern feature.

A SOAP binding specification (see SOAP Part 1 section 4) describes, among other
things, which (if any) features it provides. Some features may be provided natively by the
underlying protocol. If the feature is not available through the binding, it may be
implemented within the SOAP envelope, using SOAP header blocks. The specification of
a feature implemented using SOAP header blocks is called a SOAP module.

For example, if SOAP message exchanges were being transported directly over a
datagram protocol like UDP, obviously the message correlation feature would have to be
provided elsewhere, either directly by the application or more likely as a part of the SOAP
infosets being exchanged. In the latter case, the message correlation feature has a
binding-specific expression within the SOAP envelope, i.e., as a SOAP header block,
defined in a "Request-Response Correlation" module identified by a URI. However, if the
SOAP infosets were being exchanged using an underlying protocol that was itself
request/response, the application could implicitly "inherit" this feature provided by the
binding, and no further support need be provided at the application or the SOAP level. (In
fact, the HTTP binding for SOAP takes advantage of just this feature of HTTP.)

However, a SOAP message may travel over several hops between a sender and the
ultimate receiver, where each hop may be a different protocol binding. In other words, a

From www.w3c.org 27 7/10/2003

feature (e.g., message correlation, reliability etc.) that is supported by the protocol
binding in one hop may not be supported by another along the message path. SOAP
itself does not provide any mechanism for hiding the differences in features provided by
different underlying protocols. However, any feature that is required by a particular
application, but which may not be available in the underlying infrastructure along the
anticipated message path, can be compensated for by being carried as a part of the
SOAP message infoset, i.e., as a SOAP header block specified in some module.

Thus it is apparent that there are a number of issues that have to be tackled by an
application designer to accomplish particular application semantics, including how to take
advantage of the native features of underlying protocols that are available for use in the
chosen environment. SOAP Part 1 section 4.2 provides a general framework for
describing how SOAP-based applications may choose to use the features provided by an
underlying protocol binding to accomplish particular application semantics. It is intended
to provide guidelines for writing interoperable protocol binding specifications for
exchanging SOAP messages.

Among other things, a binding specification must define one particular feature, namely
the message exchange pattern(s) that it supports. [SOAP Part2] defines two such
message exchange patterns, namely a SOAP Request-Response message exchange
pattern where one SOAP message is exchanged in each direction between two adjacent
SOAP nodes, and a SOAP Response message exchange pattern which consists of a
non-SOAP message acting as a request followed by a SOAP message included as a part
of the response.

[SOAP Part2] also offers the application designer a general feature called the SOAP Web
Method feature that allows applications full control over the choice of the so-called "Web
method" - one of GET, POST, PUT, DELETE whose semantics are as defined in the
[HTTP 1.1] specifications - that may be used over the binding. This feature is defined to
ensure that applications using SOAP can do so in a manner which is compatible with the
architectural principles of the World Wide Web. (Very briefly, the simplicity and scalability
of the Web is largely due to the fact that there are a few "generic" methods (GET, POST,
PUT, DELETE) which can be used to interact with any resource made available on the
Web via a URI.) The SOAP Web Method feature is supported by the SOAP HTTP
binding, although, in principle, it is available to all SOAP underlying protocol bindings.

SOAP Part 2 section 7 specifies one standardized protocol binding using the binding
framework of [SOAP Part1], namely how SOAP is used in conjunction with HTTP as the
underlying protocol. SOAP Version 1.2 restricts itself to the definition of a HTTP binding
allowing only the use of the POST method in conjunction with the Request-Response
message exchange pattern and the GET method with the SOAP Response message
exchange pattern. Other specifications in future could define SOAP bindings to HTTP or
other transports that make use of the other Web methods (i.e., PUT, DELETE).

The next sections show examples of two underlying protocol bindings for SOAP, namely
those to [HTTP 1.1] and email. It should be emphasized again that the only normative
binding for SOAP 1.2 messages is to [HTTP 1.1]. The examples in section 4.2 showing
email as a transport mechanism for SOAP is simply meant to suggest that other choices

From www.w3c.org 28 7/10/2003

for the transfer of SOAP messages are possible, although not standardized at this time. A
W3C Note [SOAP Email Binding] offers an application of the SOAP protocol binding
framework of [SOAP Part1] by describing an experimental binding of SOAP to email
transport, specifically [RFC 2822]-based message transport.

4.1 The SOAP HTTP Binding
HTTP has a well-known connection model and a message exchange pattern. The client
identifies the server via a URI, connects to it using the underlying TCP/IP network, issues
a HTTP request message and receives a HTTP response message over the same TCP
connection. HTTP implicitly correlates its request message with its response message;
therefore, an application using this binding can chose to infer a correlation between a
SOAP message sent in the body of a HTTP request message and a SOAP message
returned in the HTTP response. Similarly, HTTP identifies the server endpoint via a URI,
the Request-URI, which can also serve as the identification of a SOAP node at the
server.

HTTP allows for multiple intermediaries between the initial client and the origin server
identified by the Request-URI, in which case the request/response model is a series of
such pairs. Note, however, that HTTP intermediaries are distinct from SOAP
intermediaries.

The HTTP binding in [SOAP Part2] makes use of the SOAP Web Method feature to allow
applications to choose the so-called Web method - restricting it to one of GET or POST -
to use over the HTTP message exchange. In addition, it makes use of two message
exchange patterns that offer applications two ways of exchanging SOAP messages via
HTTP: 1) the use of the HTTP POST method for conveying SOAP messages in the
bodies of HTTP request and response messages, and 2) the use of the HTTP GET
method in a HTTP request to return a SOAP message in the body of a HTTP response.
The first usage pattern is the HTTP-specific instantiation of a binding feature called the
SOAP request-response message exchange pattern, while the second uses a feature
called the SOAP response message exchange pattern.

The purpose of providing these two types of usages is to accommodate the two
interaction paradigms which are well established on the World Wide Web. The first type
of interaction allows for the use of data within the body of a HTTP POST to create or
modify the state of a resource identified by the URI to which the HTTP request is
destined. The second type of interaction pattern offers the ability to use a HTTP GET
request to obtain a representation of a resource without altering its state in any way. In
the first case, the SOAP-specific aspect of concern is that the body of the HTTP POST
request is a SOAP message which has to be processed (per the SOAP processing
model) as a part of the application-specific processing required to conform to the POST
semantics. In the second case, the typical usage that is forseen is the case where the
representation of the resource that is being requested is returned not as a HTML, or
indeed a generic XML document, but as a SOAP message. That is, the HTTP content
type header of the response message identifies it as being of media type
"application/soap+xml". Presumably, there will be publishers of resources on the Web

From www.w3c.org 29 7/10/2003

who determine that such resources are best retrieved and made available in the form of
SOAP messages. Note, however, that resources can, in general, be made available in
multiple representations, and the desired or preferred representation is indicated by the
requesting application using the HTTP Accept header.

One further aspect of the SOAP HTTP binding is the question of how an application
determines which of these two types of message exchange patterns to use. [SOAP
Part2] offers guidance on circumstances when applications may use one of the two
specified message exchange patterns. (It is guidance - albeit a strong one - as it is
phrased in the form of a "SHOULD" in the specifications rather than an absolute
requirement identified by the word "MUST", where these words are interpreted as defined
in the IETF [RFC 2119].) The SOAP response message exchange pattern with the HTTP
GET method is used when an application is assured that the message exchange is for
the purposes of information retrieval, where the information resource is "untouched" as a
result of the interaction. Such interactions are referred to as safe and idempotent in the
HTTP specification. As the HTTP SOAP GET usage does not allow for a SOAP message
in the request, applications that need features in the outbound interaction that can only
be supported by a binding-specific expression within the SOAP infoset (i.e., as SOAP
header blocks) obviously cannot make use of this message exchange pattern. Note that
the HTTP POST binding is available for use in all cases.

The following subsections provide examples of the use of these two message exchange
patterns defined for the HTTP binding.

4.1.1. SOAP HTTP GET Usage

Using the HTTP binding with the SOAP Response message exchange pattern is
restricted to the HTTP GET method. This means that the response to a HTTP GET
request from a requesting SOAP node is a SOAP message in the HTTP response.

Example 8a shows a HTTP GET directed by the traveller's application (in the continuing
travel reservation scenario) at the URI
http://travelcompany.example.org/reservations?code=FT35ZBQ where the traveler's
itinerary may be viewed. (How this URL was made available can be seen in Example 5a.)

Example 8a
GET /travelcompany.example.org/reservations?code=FT35ZBQ HTTP/1.1
Host: travelcompany.example.org
Accept: text/html;q=0.5, application/soap+xml

HTTP GET Request

The HTTP Accept header is used to indicate the preferred representation of the resource
being requested, which in this example is an "application/soap+xml" media type for
consumption by a machine client, rather than the "text/html" media type for rendition by a
browser client for consumption by a human.

Example 8b shows the HTTP response to the GET in Example 8a. The body of the HTTP

From www.w3c.org 30 7/10/2003

response contains a SOAP message showing the travel details. A discussion of the
contents of the SOAP message is postponed until section 5.2 , as it is not relevant, at this
point, to understanding the HTTP GET binding usage.

Example 8b
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-30T16:25:00.000-05:00</m:dateAndTime>
 </m:reservation>
 </env:Header>
 <env:Body>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:x="http://travelcompany.example.org/vocab#"
 env:encodingStyle="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <x:ReservationRequest
 rdf:about="http://travelcompany.example.org/reservations?code=FT35ZBQ">
 <x:passenger>Åke Jógvan Øyvind</x:passenger>
 <x:outbound>
 <x:TravelRequest>
 <x:to>LAX</x:to>
 <x:from>LGA</x:from>
 <x:date>2001-12-14</x:date>
 </x:TravelRequest>
 </x:outbound>
 <x:return>
 <x:TravelRequest>
 <x:to>JFK</x:to>
 <x:from>LAX</x:from>
 <x:date>2001-12-20</x:date>
 </x:TravelRequest>
 </x:return>
 </x:ReservationRequest>
 </rdf:RDF>
 </env:Body>
</env:Envelope>

SOAP message returned as a response to the HTTP GET in Example 8a

Note that the reservation details could well have been returned as an (X)HTML
document, but this example wanted to show a case where the reservation application is
returning the state of the resource (the reservation) in a data-centric media form (a SOAP
message) which can be machine processed, instead of (X)HTML which would be
processed by a browser. Indeed, in the most likely anticipated uses of SOAP, the
consuming application will not be a browser.

Also, as shown in the example, the use of SOAP in the HTTP response body offers the

From www.w3c.org 31 7/10/2003

possibility of expressing some application-specific feature through the use of SOAP
headers. By using SOAP, the application is provided with a useful and consistent
framework and processing model for expressing such features.

4.1.2 SOAP HTTP POST Usage

Using the HTTP binding with the SOAP Request-Response message exchange pattern is
restricted to the HTTP POST method. Note that the use of this message exchange
pattern in the SOAP HTTP binding is available to all applications, whether they involve
the exchange of general XML data or RPCs (as in the following examples) encapsulated
in SOAP messages.

Examples 9 and 10 show an example of a HTTP binding using the SOAP Request-
Response message exchange pattern, using the same scenario as that for Example 4
and Example 5a, respectively, namely conveying an RPC and its return in the body of a
SOAP message. The examples and discussion in this section only concentrate on the
HTTP headers and their role.

Example 9
POST /Reservations HTTP/1.1
Host: travelcompany.example.org
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true" >5</t:transaction>
 </env:Header>
 <env:Body>
 <m:chargeReservation
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation">
 <m:code>FT35ZBQ</m:code>
 </m:reservation>
 <o:creditCard xmlns:o="http://mycompany.example.com/financial">
 <n:name xmlns:n="http://mycompany.example.com/employees">
 Åke Jógvan Øyvind
 </n:name>
 <o:number>123456789099999</o:number>
 <o:expiration>2005-02</o:expiration>
 </o:creditCard>
 </m:chargeReservation>
 </env:Body>
</env:Envelope>

RPC in Example 4 carried in an HTTP POST Request

Example 9 shows an RPC request directed at the travel service application. The SOAP

From www.w3c.org 32 7/10/2003

message is sent in the body of a HTTP POST method directed at the URI identifying the
"Reservations" resource on the server travelcompany.example.org. When using HTTP,
the Request-URI indicates the resource to which the invocation is "posted". Other than
requiring that it be a valid URI, SOAP places no formal restriction on the form of the
request URI (see [RFC 2396] for more information on URIs). However, one of the
principles of the Web architecture is that all important resources be identified by URIs.
This implies that most well-architected SOAP services will be embodied as a large
number of resources, each with its own URI. Indeed, many such resources are likely to
be created dynamically during the operation of a service, such as, for instance, the
specific travel reservation shown in the example. So, a well-architected travel service
application should have different URIs for each reservation, and SOAP requests to
retrieve or manipulate those reservations will be directed at their URIs, and not at a single
monolithic "Reservations" URI, as shown in Example 9. Example 13 in section 4.1.3
shows the preferred way to address resources such as a particular travel reservation.
Therefore, we defer until section 4.1.3 further discussion of Web architecture compatible
SOAP/HTTP usage.

When placing SOAP messages in HTTP bodies, the HTTP Content-type header must be
chosen as "application/soap+xml". (The optional charset parameter, which can take the
value of "utf-8" or "utf-16", is shown in this example, but if it is absent the character set
rules for freestanding [XML 1.0] apply to the body of the HTTP request.)

Example 10 shows the RPC return (with details omitted) sent by the travel service
application in the corresponding HTTP response to the request from Example 5a. SOAP,
using HTTP transport, follows the semantics of the HTTP status codes for communicating
status information in HTTP. For example, the 2xx series of HTTP status codes indicate
that the client's request (including the SOAP component) was successfully received,
understood, and accepted etc.

Example 10
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 ...
 ...
 </env:Header>
 <env:Body>
 ...
 ...
 </env:Body>
</env:Envelope>

RPC return in Example 5a embedded in an HTTP Response indicating a successful
completion

If an error occurs processing the request, the HTTP binding specification requires that a
HTTP 500 "Internal Server Error" be used with an embedded SOAP message containing

From www.w3c.org 33 7/10/2003

a SOAP fault indicating the server-side processing error.

Example 11 is the same SOAP fault message as Example 6a, but this time with the
HTTP headers added.

Example 11
HTTP/1.1 500 Internal Server Error
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>rpc:BadArguments</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en-US">Processing error</env:Text>
 <env:Text xml:lang="cs">Chyba zpracování</env:Text>
 </env:Reason>
 <env:Detail>
 <e:myFaultDetails
 xmlns:e="http://travelcompany.example.org/faults" >
 <e:message>Name does not match card number</e:message>
 <e:errorcode>999</e:errorcode>
 </e:myFaultDetails>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Sample SOAP message in a HTTP Response indicating failure to handle the SOAP
Body in Example 4

SOAP Part 2 Table 16 provides detailed behavior for handling the various possible HTTP
response codes, i.e., the 2xx (successful), 3xx (redirection), 4xx (client error) and 5xx
(server error).

4.1.3 Web Architecture Compatible SOAP Usage

One of the most central concepts of the World Wide Web is that of a URI as a resource
identifier. SOAP services that use the HTTP binding and wish to interoperate with other
Web software should use URIs to address all important resources in their service. For
example, a very important - indeed predominant - use of the World Wide Web is pure
information retrieval, where the representation of an available resource, identified by a
URI, is fetched using a HTTP GET request without affecting the resource in any way.
(This is called a safe and idempotent method in HTTP terminology.) The key point is that
the publisher of a resource makes available its URI, which consumers may "GET".

From www.w3c.org 34 7/10/2003

There are many instances when SOAP messages are designed for uses which are purely
for information retrieval, such as when the state of some resource (or object, in
programming terms) is requested, as opposed to uses that perform resource
manipulation. In such instances, the use of a SOAP body to carry the request for the
state, with an element of the body representing the object in question, is seen as counter
to the spirit of the Web because the resource is not identified by the Request-URI of the
HTTP GET. (In some SOAP/RPC implementations, the HTTP Request-URI is often not
the identifier of the resource itself but some intermediate entity which has to evaluate the
SOAP message to identify the resource.)

To highlight the changes needed, Example 12a shows the way that is not recommended
for doing safe information retrieval on the Web. This is an example of an RPC carried in a
SOAP message, again using the travel reservation theme, where the request is to
retrieve the itinerary for a particular reservation identified by one of the parameters,
reservationCode, of the RPC. (For purposes of this discussion, it is assumed that the
application using this RPC request does not need features which require the use of
SOAP headers.)

Example 12a
POST /Reservations HTTP/1.1
Host: travelcompany.example.org
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Body>
 <m:retrieveItinerary
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:reservationCode>FT35ZBQ</m:reservationCode>
 </m:retrieveItinerary>
 </env:Body>
</env:Envelope>

This representation is discouraged in cases where the operation is a "safe" retrieval
(i.e., it has no side effects)

Note that the resource to be retrieved is not identified by the target URI in the HTTP
request but has to be obtained by looking within the SOAP envelope. Thus, it is not
possible, as would be the case with other "gettable" URIs on the Web, to make this
available via HTTP alone to consumers on the World Wide Web.

SOAP Part 2 section 4.1 offers recommendations on how RPCs that constitute safe and
idempotent information retrievals may be defined in a Web-friendly manner. It does so by
distinguishing aspects of the method and specific parameters in an RPC definition that
serve to identify resources from those that serve other purposes. In Example 12a, the
resource to be retrieved is identified by two things: the first is that it is an itinerary (part of
the method name), and the second is the reference to a specific instance (a parameter to
the method). In such a case, the recommendation is that these resource-identifying parts

From www.w3c.org 35 7/10/2003

be made available in the HTTP Request-URI identifying the resource, as for example, as
follows: http://travelcompany.example.org/reservations/itinerary?
reservationCode=FT35ZBQ.

Furthermore, when an RPC definition is such that all parts of its method description can
be described as resource-identifying, the entire target of the RPC may be identified by a
URI. In this case, if the supplier of the resource can also assure that a retrieval request is
safe, then SOAP Version 1.2 recommends that the choice of the Web method property of
GET and the use of the SOAP Response message exchange pattern be used as
described in section 4.1.1. This will ensure that the SOAP RPC is performed in a Web
architecture compatible manner. Example 12b shows the preferred way for a SOAP node
to request the safe retrieval of a resource.

Example 12b
GET /Reservations/itinerary?reservationCode=FT35ZBQ HTTP/1.1
Host: travelcompany.example.org
Accept: application/soap+xml

The Web architecture compatible alternative to representing the RPC in Example 12a

It should be noted that SOAP Version 1.2 does not specify any algorithm on how to
compute a URI from the definition of an RPC which has been determined to represent
pure information retrieval.

Note, however, that if the application requires the use of features that can only have a
binding-specific expression within the SOAP infoset, i.e., using SOAP header blocks,
then the application must choose HTTP POST method with a SOAP message in the
request body.

It also requires the use of the SOAP Request-Response message exchange pattern
implemented via a HTTP POST if the RPC description includes data (parameters) which
are not resource-identifying. Even in this case, the HTTP POST with a SOAP message
can be represented in a Web-friendly manner. As with the use of the GET, [SOAP Part2]
recommends for the general case that any part of the SOAP message that serves to
identify the resource to which the request is POSTed be identified in the HTTP Request-
URI. The same parameters may, of course, be retained in the SOAP env:Body element.
(The parameters must be retained in the Body in the case of a SOAP-based RPC as
these are related to the procedure/method description expected by the receiving
application.)

Example 13 is the same as that in Example 9, except that the HTTP Request-URI has
been modified to include the reservation code, which serves to identify the resource (the
reservation in question, which is being confirmed and paid for).

Example 13
POST /Reservations?code=FT35ZBQ HTTP/1.1
Host: travelcompany.example.org
Content-Type: application/soap+xml; charset="utf-8"

From www.w3c.org 36 7/10/2003

Content-Length: nnnn

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true" >5</t:transaction>
 </env:Header>
 <env:Body>
 <m:chargeReservation
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation">
 <m:code>FT35ZBQ</m:code>
 </m:reservation>
 <o:creditCard xmlns:o="http://mycompany.example.com/financial">
 <n:name xmlns:n="http://mycompany.example.com/employees">
 Åke Jógvan Øyvind
 </n:name>
 <o:number>123456789099999</o:number>
 <o:expiration>2005-02</o:expiration>
 </o:creditCard>
 </m:chargeReservation>
 </env:Body>
</env:Envelope>

RPC from Example 4 carried in an HTTP POST Request in a Web-friendly manner

In Example 13, the resource to be manipulated is identified by two things: the first is that
it is a reservation (part of the method name), and the second is the specific instance of a
reservation (which is the value of the parameter code to the method). The remainder of
the parameters in the RPC such as the creditCard number are not resource-identifying,
but are ancillary data to be processed by the resource. It is the recommendation of
[SOAP Part2] that resources that may be accessed by SOAP-based RPCs should, where
practical, place any such resource-identifying information as a part of the URI identifying
the target of the RPC. It should be noted, however, that [SOAP Part2] does not offer any
algorithm to do so. Such algorithms may be developed in future. Note, however, that all
the resource-identifying elements have been retained as in Example 9 in their encoded
form in the SOAP env:Body element.

In other words, as seen from the above examples, the recommendation in the SOAP
specifications is to use URIs in a Web-architecture compatible way - that is, as resource
identifiers - whether or not it is GET or POST that is used.

4.2 SOAP Over Email
Application developers can use the Internet email infrastructure to move SOAP
messages as either email text or attachments. The examples shown below offer one way
to carry SOAP messages, and should not be construed as being the standard way of
doing so. The SOAP Version 1.2 specifications do not specify such a binding. However,
there is a non-normative W3C Note [SOAP Email Binding] describing an email binding for

From www.w3c.org 37 7/10/2003

SOAP, its main purpose being to demonstrate the application of the general SOAP
Protocol Binding Framework described in [SOAP Part 1].

Example 14 shows the travel reservation request message from Example 1 carried as an
email message between a sending and receiving mail user agent. It is implied that the
receiver node has SOAP capabilities, to which the body of the email is delivered for
processing. (It is assumed that the sending node also has SOAP capabilities so as to be
able to process any SOAP faults received in response, or to correlate any SOAP
messages received in response to this one.)

Example 14
From: a.oyvind@mycompany.example.com
To: reservations@travelcompany.example.org
Subject: Travel to LA
Date: Thu, 29 Nov 2001 13:20:00 EST
Message-Id: <EE492E16A090090276D208424960C0C@mycompany.example.com>
Content-Type: application/soap+xml

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>New York</p:departing>
 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>

From www.w3c.org 38 7/10/2003

</env:Envelope>

SOAP message from Example 1 carried in a SMTP message

The header in Example 14 is in the standard form [RFC 2822] for email messages.

Although an email is a one-way message exchange, and no guarantee of delivery is
provided, email infrastructures like the Simple Mail Transport Protocol (SMTP)
specification [SMTP] offer a delivery notification mechanism which, in the case of SMTP,
are called Delivery Status Notification (DSN) and Message Disposition Notification
(MDN). These notifications take the form of email messages sent to the email address
specified in the mail header. Applications, as well as email end users, can use these
mechanisms to provide the status of an email transmission, but these, if delivered, are
notifications at the SMTP level. The application developer must fully understand the
capabilities and limitations of these delivery notifications or risk assuming a successful
data delivery when none occurred.

SMTP delivery status messages are separate from message processing at the SOAP
layer. Resulting SOAP responses to the contained SOAP data will be returned through a
new email message which may or may not have a link to the original requesting email at
the SMTP level. The use of the [RFC 2822] In-reply-to: header can achieve a
correlation at the SMTP level, but does not necessarily offer a correlation at the SOAP
level.

Example 15 is exactly the same scenario as described for Example 2, which shows the
SOAP message (body details omitted for brevity) sent from the travel service application
to the travel reservation application seeking clarification on some reservation details,
except that it is carried as an email message. In this example, the original email's
Message-Id is carried in the additional email header In-reply-to:, which correlates email
messages at the SMTP level, but cannot provide a SOAP-specific correlation. In this
example, the application relies on the reservation header block to correlate SOAP
messages. Again, how such correlation is achieved is application-specific, and is not
within the scope of SOAP.

Example 15
From: reservations@travelcompany.example.org
To: a.oyvind@mycompany.example.com
Subject: Which NY airport?
Date: Thu, 29 Nov 2001 13:35:11 EST
Message-Id: <200109251753.NAA10655@travelcompany.example.org>
In-reply-to:<EE492E16A090090276D208424960C0C@mycompany.example.com>
Content-Type: application/soap+xml

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</reference>
 <m:dateAndTime>2001-11-29T13:35:00.000-05:00</m:dateAndTime>

From www.w3c.org 39 7/10/2003

 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:itineraryClarifications>
 ...
 ...
 </p:itineraryClarifications>
 </p:itinerary>
 </env:Body>
</env:Envelope>

SOAP message from Example 2 carried in an email message with a header correlating
it to a previous message.

5. Advanced Usage Scenarios
5.1 Using SOAP Intermediaries
The travel reservation scenario used throughout the primer offers an opportunity to
expose some uses of SOAP intermediaries. Recall that the basic exchange was the
exchange of a travel reservation request between a travel reservation application and a
travel service application. SOAP does not specify how such a message path is
determined and followed. That is outside the scope of the SOAP specification. It does
describe, though, how a SOAP node should behave if it receives a SOAP message for
which it is not the ultimate receiver. SOAP Version 1.2 describes two types of
intermediaries: forwarding intermediaries and active intermediaries.

A forwarding intermediary is a SOAP node which, based on the semantics of a header
block in a received SOAP message or based on the message exchange pattern in use,
forwards the SOAP message to another SOAP node. For example, processing a "routing"
header block describing a message path feature in an incoming SOAP message may
dictate that the SOAP message be forwarded to another SOAP node identified by data in
that header block. The format of the SOAP header of the outbound SOAP message, i.e.,
the placement of inserted or reinserted header blocks, is determined by the overall
processing at this forwarding intermediary based on the semantics of the processed
header blocks.

An active intermediary is one that does additional processing on an incoming SOAP
message before forwarding the message using criteria that are not described by
incoming SOAP header blocks, or by the message exchange pattern in use. Some
examples of such active intervention at a SOAP node could be, for instance, encrypting
some parts of a SOAP message and providing the information on the cipher key in a
header block, or including some additional information in a new header block in the

From www.w3c.org 40 7/10/2003

outbound message providing a timestamp or an annotation, for example, for
interpretation by appropriately targeted nodes downstream.

One mechanism by which an active intermediary can describe the modifications
performed on a message is by inserting header blocks into the outbound SOAP
message. These header blocks can inform downstream SOAP nodes acting in roles
whose correct operation depends on receiving such notification. In this case, the
semantics of such inserted header blocks should also call for either the same or other
header blocks to be (re)inserted at subsequent intermediaries as necessary to ensure
that the message can be safely processed by nodes yet further downstream. For
example, if a message with header blocks removed for encryption passes through a
second intermediary (without the original header blocks being decrypted and
reconstructed), then indication that the encryption has occurred must be retained in the
second relayed message.

In the following example, a SOAP node is introduced in the message path between the
travel reservation and travel service applications, which intercepts the message shown in
Example 1. An example of such a SOAP node is one which logs all travel requests for off-
line review by a corporate travel office. Note that the header blocks reservation and
passenger in that example are intended for the node(s) that assume the role "next", which
means that it is targeted at the next SOAP node in the message path that receives the
message. The header blocks are mandatory (the mustUnderstand attribute is set to
"true"), which means that the node must have knowledge (through an external
specification of the header blocks' semantics) of what to do. A logging specification for
such header blocks might simply require that various details of the message be recorded
at every node that receives such a message, and that the message be relayed along the
message path unchanged. (Note that the specifications of the header blocks must require
that the same header blocks be reinserted in the outbound message, because otherwise,
the SOAP processing model would require that they be removed.) In this case, the SOAP
node acts as a forwarding intermediary.

A more complex scenario is one where the received SOAP message is amended in some
way not anticipated by the initial sender. In the following example, it is assumed that a
corporate travel application at the SOAP intermediary attaches a header block to the
SOAP message from Example 1 before relaying it along its message path towards the
travel service application - the ultimate recipient. The header block contains the
constraints imposed by a travel policy for this requested trip. The specification of such a
header block might require that the ultimate recipient (and only the ultimate recipient, as
implied by the absence of the role attribute) make use of the information conveyed by it
when processing the body of the message.

Example 16 shows an active intermediary inserting an additional header block,
travelPolicy, intended for the ultimate recipient which includes information that qualifies
the application-level processing of this travel request.

Example 16
<?xml version='1.0' ?>

From www.w3c.org 41 7/10/2003

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 <z:travelPolicy
 xmlns:z="http://mycompany.example.com/policies"
 env:mustUnderstand="true">
 <z:class>economy</z:class>
 <z:fareBasis>non-refundable<z:fareBasis>
 <z:exceptions>none</z:exceptions>
 </z:travelPolicy>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>New York</p:departing>
 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>
</env:Envelope>

SOAP message from Example 1 for a travel reservation after an active intermediary has
inserted a mandatory header intended for the ultimate recipient of the message

5.2 Using Other Encoding Schemes
Even though SOAP Version 1.2 defines a particular encoding scheme (see SOAP Part 2
section 3), its use is optional and the specification makes clear that other encoding
schemes may be used for application-specific data within a SOAP message. For this
purpose it provides the attribute env:encodingStyle, of type xs:anyURI, to qualify header
blocks, any child elements of the SOAP env:Body, and any child elements of the
env:Detail element and their descendants. It signals a serialization scheme for the

From www.w3c.org 42 7/10/2003

nested contents, or at least the one in place until another element is encountered which
indicates another encoding style for its nested contents. The choice of the value for the
env:encodingStyle attribute is an application-specific decision and the ability to
interoperate is assumed to have been settled "out-of-band". If this attribute is not present,
then no claims are being made about the encoding being used.

The use of an alternative encoding scheme is illustrated in Example 17. Continuing with
the travel reservation theme, this example shows a SOAP message which is sent to the
passenger from the travel service after the reservation is confirmed, showing the travel
details. (The same message was used in Example 8b in another context.)

Example 17
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-30T16:25:00.000-05:00</m:dateAndTime>
 </m:reservation>
 </env:Header>
 <env:Body>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:x="http://travelcompany.example.org/vocab#"
 env:encodingStyle="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <x:ReservationRequest
 rdf:about="http://travelcompany.example.org/reservations?code=FT35ZBQ">
 <x:passenger>Åke Jógvan Øyvind</x:passenger>
 <x:outbound>
 <x:TravelRequest>
 <x:to>LAX</x:to>
 <x:from>LGA</x:from>
 <x:date>2001-12-14</x:date>
 </x:TravelRequest>
 </x:outbound>
 <x:return>
 <x:TravelRequest>
 <x:to>JFK</x:to>
 <x:from>LAX</x:from>
 <x:date>2001-12-20</x:date>
 </x:TravelRequest>
 </x:return>
 </x:ReservationRequest>
 </rdf:RDF>
 </env:Body>
</env:Envelope>

SOAP message showing the use of an alternative encoding for the Body element

In Example 17, the body of the SOAP message contains a description of the itinerary
using the encoding of a graph of resources and their properties using the syntax of the
Resource Description Framework (RDF) [RDF]. (Very briefly, as RDF syntax or usage is
not the subject of this primer, an RDF graph relates resources - such as the travel
reservation resource available at http://travelcompany.example.org/reservations?

From www.w3c.org 43 7/10/2003

code=FT35ZBQ - to other resources (or values) via properties, such as the passenger, the
outbound and return dates of travel. The RDF encoding for the itinerary might have been
chosen, for example, to allow the passenger's travel application to store it in an RDF-
capable calendar application, which could then be queried in complex ways.)

6. Changes Between SOAP 1.1 and SOAP 1.2
SOAP Version 1.2 has a number of changes in syntax and provides additional (or
clarified) semantics from those described in [SOAP 1.1]. The following is a list of features
where the two specifications differ. The purpose of this list is to provide the reader with a
quick and easily accessible summary of the differences between the two specifications.
The features have been put in categories purely for ease of reference, and in some
cases, an item might equally well have been placed in another category.

Document structure

! The SOAP 1.2 specifications have been provided in two parts. [SOAP Part1]
provides an abstract Infoset-based definition of the SOAP message structure, a
processing model and an underlying protocol binding framework, while [SOAP
Part2] provides serialization rules for conveying that infoset as well as a particular
HTTP binding.

! SOAP 1.2 will not spell out the acronym.
! SOAP 1.2 has been rewritten in terms of XML infosets, and not as serializations of

the form <?xml....?> required by SOAP 1.1.

Additional or changed syntax

! SOAP 1.2 does not permit any element after the body. The SOAP 1.1 schema
definition allowed for such a possibility, but the textual description is silent about it.

! SOAP 1.2 does not allow the env:encodingStyle attribute to appear on the SOAP
env:Envelope, whereas SOAP 1.1 allows it to appear on any element. SOAP 1.2
specifies specific elements where this attribute may be used.

! SOAP 1.2 defines the new env:NotUnderstood header element for conveying
information on a mandatory header block which could not be processed, as
indicated by the presence of an env:MustUnderstand fault code. SOAP 1.1 provided
the fault code, but no details on its use.

! In the SOAP 1.2 infoset-based description, the env:mustUnderstand attribute in
header elements takes the (logical) value "true" or "false", whereas in SOAP 1.1
they are the literal value "1" or "0" respectively.

! SOAP 1.2 provides a new fault code DataEncodingUnknown.
! The various namespaces defined by the two protocols are of course different.
! SOAP 1.2 replaces the attribute env:actor with env:role but with essentially the

same semantics.
! SOAP 1.2 defines a new attribute, env:relay, for header blocks to indicate if

unprocessed header blocks should be forwarded.
! SOAP 1.2 defines two new roles, "none" and "ultimateReceiver", together with a

more detailed processing model on how these behave.

From www.w3c.org 44 7/10/2003

! SOAP 1.2 has removed the "dot" notation for fault codes, which are now simply an
XML Qualified Name, where the namespace prefix is the SOAP envelope
namespace.

! SOAP 1.2 replaces "client" and "server" fault codes with "Sender" and "Receiver".
! SOAP 1.2 uses the element names env:Code and env:Reason, respectively, for what

used to be called faultcode and faultstring in SOAP 1.1. SOAP 1.2 also allows
multiple env:Text child elements of env:Reason qualified by xml:lang to allow
multiple language versions of the fault reason.

! SOAP 1.2 provides a hierarchical structure for the mandatory SOAP env:Code sub-
element in the env:Fault element, and introduces two new optional subelements,
env:Node and env:Role.

! SOAP 1.2 removes the distinction that was present in SOAP 1.1 between header
and body faults as indicated by the presence of the env:Details element in
env:Fault. In SOAP 1.2, the presence of the env:Details element has no
significance as to which part of the fault SOAP message was processed.

! SOAP 1.2 uses XML Base [XML Base] for determining a base URI for relative URI
references whereas SOAP 1.1 is silent about the matter.

SOAP HTTP binding

! In the SOAP 1.2 HTTP binding, the SOAPAction HTTP header defined in SOAP 1.1
has been removed, and a new HTTP status code 427 has been sought from IANA
for indicating (at the discretion of the HTTP origin server) that its presence is
required by the server application. The contents of the former SOAPAction HTTP
header are now expressed as a value of an (optional) "action" parameter of the
"application/soap+xml" media type that is signaled in the HTTP binding.

! In the SOAP 1.2 HTTP binding, the Content-type header should be
"application/soap+xml" instead of "text/xml" as in SOAP 1.1. The IETF registration
for this new media type is pending [SOAP MediaType].

! SOAP 1.2 provides a finer grained description of use of the various 2xx, 3xx, 4xx
HTTP status codes.

! Support of the HTTP extensions framework has been removed from SOAP 1.2.
! SOAP 1.2 provides an additional message exchange pattern which may be used as

a part of the HTTP binding that allows the use of HTTP GET for safe and
idempotent information retrievals.

RPC

! SOAP 1.2 provides a rpc:result element accessor for RPCs.
! SOAP 1.2 provides several additional fault codes in the RPC namespace.
! SOAP 1.2 offers guidance on a Web-friendly approach to defining RPCs where the

procedure's purpose is purely "safe" informational retrieval.

SOAP encodings

! An abstract data model based on a directed edge labeled graph has been
formulated for SOAP 1.2. The SOAP 1.2 encodings are dependent on this data

From www.w3c.org 45 7/10/2003

model. The SOAP RPC conventions are dependent on this data model, but have no
dependencies on the SOAP encoding. Support of the SOAP 1.2 encodings and
SOAP 1.2 RPC conventions are optional.

! The syntax for the serialization of an array has been changed in SOAP 1.2 from
that in SOAP 1.1.

! The support provided in SOAP 1.1 for partially transmitted and sparse arrays is not
available in SOAP 1.2.

! SOAP 1.2 allows the inline (embedded) serialization of multiref values.
! The href attribute in SOAP 1.1 (of type xs:anyURI) is called enc:ref in SOAP 1.2

and is of type IDREF.
! In SOAP 1.2, omitted accessors of compound types are made equal to NILs.
! SOAP 1.2 provides several fault sub-codes for indicating encoding errors.
! Types on nodes are made optional in SOAP 1.2.
! SOAP 1.2 has removed generic compound values from the SOAP Data Model.
! SOAP 1.2 has added an optional attribute enc:nodeType to elements encoded using

SOAP encoding that identifies its structure (i.e., a simple value, a struct or an
array).

SOAP Part 1 Appendix A provides version management rules for a SOAP node that can
support the version transition from [SOAP 1.1] to SOAP Version 1.2. In particular, in
defines an env:Upgrade header block which can be used by a SOAP 1.2 node on receipt
of a [SOAP 1.1] message to send a SOAP fault message to the originator to signal which
version of SOAP it supports.

7. References
[SOAP Part1] W3C Recommendation "SOAP 1.2 Part 1: Messaging Framework", Martin
Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 24 June 2003 (See
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.)

[SOAP Part2] W3C Recommendation "SOAP 1.2 Part 2: Adjuncts", Martin Gudgin, Marc
Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 24 June 2003 (See
http://www.w3.org/TR/2003/REC-soap12-part2-20030624.)

[RFC 2396] IETF "RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax", T.
Berners-Lee, R. Fielding, L. Masinter, August 1998. (See
http://www.ietf.org/rfc/rfc2396.txt.)

[HTTP 1.1] IETF "RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J.
Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee, January 1997. (See
http://www.ietf.org/rfc/rfc2616.txt.)

[XML 1.0] W3C Recommendation "Extensible Markup Language (XML) 1.0 (Second
Edition)", Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, 6 October 2000.
(See http://www.w3.org/TR/2000/REC-xml-20001006.

From www.w3c.org 46 7/10/2003

[Namespaces in XML] W3C Recommendation "Namespaces in XML", Tim Bray, Dave
Hollander, Andrew Layman, 14 January 1999. (See http://www.w3.org/TR/1999/REC-
xml-names-19990114/.)

[XML Schema Part1] W3C Recommendation "XML Schema Part 1: Structures", Henry
S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, 2 May 2001. (See
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/)

[XML Schema Part2] W3C Recommendation "XML Schema Part 2: Datatypes", Paul V.
Biron, Ashok Malhotra, 2 May 2001. (See http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/)

[SMTP] SMTP is defined in a series of RFCs:

! RFC 2822 Internet Message Format. (See http://www.ietf.org/rfc/rfc2822.txt.)
! RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One:Format of

Internet Message Bodies. (See http://www.ietf.org/rfc/rfc2045.txt.)
! RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.

(See http://www.ietf.org/rfc/rfc2046.txt.)
! RFC 1894 An Extensible Message Format for Delivery Status Notifications. (See

http://www.ietf.org/rfc/rfc1894.txt.)
! RFC 2852 Deliver By SMTP Service Extension. (See

http://www.ietf.org/rfc/rfc2852.txt.)
! RFC 2298 An Extensible Message Format for Message Disposition Notifications.

(See http://www.ietf.org/rfc/rfc2298.txt.)

[RDF] W3C Recommendation "Resource Description Framework (RDF) Model and
Syntax Specification", O. Lassila and R. Swick, Editors. World Wide Web Consortium. 22
February 1999. (See http://www.w3.org/TR/REC-rdf-syntax.)

[SOAP 1.1] W3C Note "Simple Object Access Protocol (SOAP) 1.1", Don Box et al., 8
May, 2000 (See http://www.w3.org/TR/SOAP/)

[XML Infoset] W3C Recommendation "XML Information Set", John Cowan, Richard
Tobin, 24 October 2001. (See http://www.w3.org/TR/xml-infoset/)

[SOAP MediaType] IETF Internet Draft "The 'application/soap+xml' media type", M.
Baker, M. Nottingham, "draft-baker-soap-media-reg-03.txt", May 29, 2003. (See
http://www.ietf.org/internet-drafts/draft-baker-soap-media-reg-03.txt, note that this
Internet Draft expires in November 2003)

[SOAP Email Binding] W3C Note "SOAP Version 1.2 Email Binding", Highland Mary
Mountain et al, draft June 13, 2002. (See http://www.w3.org/TR/2002/NOTE-soap12-
email-20020626.)

[XML Base] W3C Recommendation "XML Base", Jonathan Marsh, 27 June 2001. (See

From www.w3c.org 47 7/10/2003

http://www.w3.org/TR/2001/REC-xmlbase-20010627/)

[RFC 2119] IETF "RFC 2119: Key words for use in RFCs to Indicate Requirement
Levels", S. Bradner, March 1997. (See http://www.ietf.org/rfc/rfc2119.txt.)

A. Acknowledgements
Highland Mary Mountain (Intel) provided the initial material for the section on the SMTP
binding. Paul Denning provided material for a usage scenario, which has since been
moved to the SOAP Version 1.2 Usage Scenarios Working Draft. Stuart Williams, Oisin
Hurley, Chris Ferris, Lynne Thompson, John Ibbotson, Marc Hadley, Yin-Leng Husband
and Jean-Jacques Moreau provided detailed comments on earlier versions of this
document, as did many others during the Last Call Working Draft review. Jacek Kopecky
provided a list of RPC and SOAP encoding changes.

This document is the work of the W3C XML Protocol Working Group.

Participants in the Working Group are (at the time of writing, and by alphabetical order):
Carine Bournez (W3C), Michael Champion (Software AG), Glen Daniels (Macromedia,
formerly of Allaire), David Fallside (IBM, Chair), Dietmar Gaertner (Software AG), Tony
Graham (Sun Microsystems), Martin Gudgin (Microsoft Corporation, formerly of
DevelopMentor), Marc Hadley (Sun Microsystems), Gerd Hoelzing (SAP AG), Oisin
Hurley (IONA Technologies), John Ibbotson (IBM), Ryuji Inoue (Matsushita Electric),
Kazunori Iwasa (Fujitsu Limited), Mario Jeckle (DaimlerChrysler R. & Tech), Mark Jones
(AT&T), Anish Karmarkar (Oracle), Jacek Kopecky (Systinet/Idoox), Yves Lafon (W3C),
Michah Lerner (AT&T), Noah Mendelsohn (IBM, formerly of Lotus Development), Jeff
Mischkinsky (Oracle), Nilo Mitra (Ericsson), Jean-Jacques Moreau (Canon), Masahiko
Narita (Fujitsu Limited), Eric Newcomer (IONA Technologies), Mark Nottingham (BEA
Systems, formerly of Akamai Technologies), David Orchard (BEA Systems, formerly of
Jamcracker), Andreas Riegg (DaimlerChrysler R. & Tech), Hervé Ruellan (Canon), Jeff
Schlimmer (Microsoft Corporation), Miroslav Simek (Systinet/Idoox), Pete Wenzel
(SeeBeyond), Volker Wiechers (SAP AG).

Previous participants were: Yasser alSafadi (Philips Research), Bill Anderson (Xerox),
Vidur Apparao (Netscape), Camilo Arbelaez (WebMethods), Mark Baker (Idokorro Mobile
(Planetfred), formerly of Sun Microsystems), Philippe Bedu (EDF (Electricité de France)),
Olivier Boudeville (EDF (Electricité de France)), Don Box (Microsoft Corporation, formerly
of DevelopMentor), Tom Breuel (Xerox), Dick Brooks (Group 8760), Winston Bumpus
(Novell), David Burdett (Commerce One), Charles Campbell (Informix Software), Alex
Ceponkus (Bowstreet), David Chappell (Sonic Software), Miles Chaston (Epicentric),
David Clay (Oracle), David Cleary (Progress Software), Conleth O'Connell (Vignette),
Ugo Corda (Xerox), Paul Cotton (Microsoft Corporation), Fransisco Cubera (IBM), Jim
d'Augustine (eXcelon), Ron Daniel (Interwoven), Dug Davis (IBM), Ray Denenberg
(Library of Congress), Paul Denning (MITRE), Frank DeRose (Tibco), Mike Dierken
(DataChannel), Andrew Eisenberg (Progress Software), Brian Eisenberg (DataChannel),
Colleen Evans (Sonic Software), John Evdemon (XMLSolutions), David Ezell (Hewlett-
Packard), Eric Fedok (Active Data Exchange), Chris Ferris (Sun Microsystems), Daniela

From www.w3c.org 48 7/10/2003

Florescu (Propel), Dan Frantz (BEA Systems), Michael Freeman (Engenia Software),
Scott Golubock (Epicentric), Rich Greenfield (Library of Congress), Hugo Haas (W3C),
Mark Hale (Interwoven), Randy Hall (Intel), Bjoern Heckel (Epicentric), Erin Hoffman
(Tradia), Steve Hole (MessagingDirect Ltd.), Mary Holstege (Calico Commerce), Jim
Hughes (Fujitsu Software Corporation), Yin-Leng Husband (Hewlett-Packard, formerly of
Compaq), Scott Isaacson (Novell), Murali Janakiraman (Rogue Wave), Eric Jenkins
(Engenia Software), Jay Kasi (Commerce One), Jeffrey Kay (Engenia Software), Richard
Koo (Vitria Technology Inc.), Alan Kropp (Epicentric), Julian Kumar (Epicentric), Peter
Lecuyer (Progress Software), Tony Lee (Vitria Technology Inc.), Amy Lewis (TIBCO),
Bob Lojek (Intalio), Henry Lowe (OMG), Brad Lund (Intel), Matthew MacKenzie
(XMLGlobal Technologies), Murray Maloney (Commerce One), Richard Martin (Active
Data Exchange), Highland Mary Mountain (Intel), Alex Milowski (Lexica), Kevin Mitchell
(XMLSolutions), Ed Mooney (Sun Microsystems), Dean Moses (Epicentric), Don Mullen
(TIBCO), Rekha Nagarajan (Calico Commerce), Raj Nair (Cisco), Mark Needleman (Data
Research Associates), Art Nevarez (Novell), Henrik Nielsen (Microsoft Corporation),
Kevin Perkins (Compaq), Jags Ramnaryan (BEA Systems), Vilhelm Rosenqvist (NCR),
Marwan Sabbouh (MITRE), Waqar Sadiq (Vitria Technology Inc.), Rich Salz (Zolera),
Krishna Sankar (Cisco), George Scott (Tradia), Shane Sesta (Active Data Exchange),
Lew Shannon (NCR), John-Paul Sicotte (MessagingDirect Ltd.), Simeon Simeonov
(Allaire), Simeon Simeonov (Macromedia), Aaron Skonnard (DevelopMentor), Nick
Smilonich (Unisys), Soumitro Tagore (Informix Software), James Tauber (Bowstreet),
Lynne Thompson (Unisys), Patrick Thompson (Rogue Wave), Jim Trezzo (Oracle), Asir
Vedamuthu (WebMethods), Randy Waldrop (WebMethods), Fred Waskiewicz (OMG),
David Webber (XMLGlobal Technologies), Ray Whitmer (Netscape), Stuart Williams
(Hewlett-Packard), Yan Xu (DataChannel), Amr Yassin (Philips Research), Susan Yee
(Active Data Exchange), Jin Yu (Martsoft).

We also wish to thank all the people who have contributed to discussions on xml-dist-
app@w3.org.

	SOAP Version 1.2 Part 0: Primer
	24 Jun 2003 W3C Recommendation, World Wide Web Consortium
	Abstract
	Status of this Document
	Table of Contents
	1. Introduction
	1.1 Overview
	1.2 Notational Conventions

	2. Basic Usage Scenarios
	2.1 SOAP Messages
	2.2 SOAP Message Exchange
	2.2.1 Conversational Message Exchanges
	2.2.2 Remote Procedure Calls

	2.3 Fault Scenarios

	3. SOAP Processing Model
	3.1 The "role" Attribute
	3.2 The "mustUnderstand" Attribute
	3.3 The "relay" Attribute

	4. Using Various Protocol Bindings
	4.1 The SOAP HTTP Binding
	4.2 SOAP Over Email

	5. Advanced Usage Scenarios
	5.1 Using SOAP Intermediaries
	5.2 Using Other Encoding Schemes

	6. Changes Between SOAP 1.1 and SOAP 1.2
	7. References
	A. Acknowledgements

	
	W3C Title Page

