
From www.w3c.org  1 7/10/2003

SOAP Version 1.2 Part 2: Adjuncts
W3C Recommendation 24 June 2003

This version: 
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/ 

Latest version: 
http://www.w3.org/TR/soap12-part2/ 

Previous versions: 
http://www.w3.org/TR/2003/PR-soap12-part2-20030507/ 

Editors: 
Martin Gudgin, Microsoft 
Marc Hadley, Sun Microsystems 
Noah Mendelsohn, IBM 
Jean-Jacques Moreau, Canon 
Henrik Frystyk Nielsen, Microsoft 

Please refer to the errata for this document, which may include some normative 
corrections.

The English version of this specification is the only normative version. Non-normative 
translations may also be available.

Copyright ©2003 W3C®(MIT, ERCIM, Keio), All Rights Reserved. W3C viability, 
trademark, document use and software licensing rules apply.

Abstract
SOAP Version 1.2 is a lightweight protocol intended for exchanging structured 
information in a decentralized, distributed environment. SOAP Version 1.2 Part 2: 
Adjuncts defines a set of adjuncts that may be used with SOAP Version 1.2 Part 1: 
Messaging Framework. This specification depends on SOAP Version 1.2 Part 1: 
Messaging Framework [SOAP Part 1]. 

Status of this Document



From www.w3c.org  2 7/10/2003

This section describes the status of this document at the time of its publication. Other 
documents may supersede this document. The latest status of this document series is 
maintained at the W3C.

This document is a Recommendation of the W3C. This document has been produced by 
the XML Protocol Working Group, which is part of the Web Services Activity. It has been 
reviewed by W3C Members and other interested parties, and has been endorsed by the 
Director as a W3C Recommendation. It is a stable document and may be used as 
reference material or cited as a normative reference from another document. W3C's role 
in making the Recommendation is to draw attention to the specification and to promote its 
widespread deployment. This enhances the functionality and interoperability of the Web.

Comments on this document are welcome. Please send them to the public mailing-list 
xmlp-comments@w3.org (archive). It is inappropriate to send discussion email to this 
address. 

Information about implementations relevant to this specification can be found in the 
Implementation Report at 
http://www.w3.org/2000/xp/Group/2/03/soap1.2implementation.html. 

Patent disclosures relevant to this specification may be found on the Working Group's 
patent disclosure page, in conformance with W3C policy.

A list of current W3C Recommendations and other technical reports can be found at 
http://www.w3.org/TR.

Short Table of Contents
1. Introduction
2. SOAP Data Model
3. SOAP Encoding
4. SOAP RPC Representation
5. A Convention for Describing Features and Bindings
6. SOAP-Supplied Message Exchange Patterns and Features
7. SOAP HTTP Binding
8. References
A. The application/soap+xml Media Type
B. Mapping Application Defined Names to XML Names
C. Using W3C XML Schema with SOAP Encoding (Non-Normative)
D. Acknowledgements (Non-Normative)

Table of Contents



From www.w3c.org  3 7/10/2003

1. Introduction
    1.1 Notational Conventions
2. SOAP Data Model
    2.1 Graph Edges
        2.1.1 Edge labels
    2.2 Graph Nodes
        2.2.1 Single and Multi Reference Nodes
    2.3 Values
3. SOAP Encoding
    3.1 Mapping between XML and the SOAP Data Model
        3.1.1 Encoding Graph Edges and Nodes
        3.1.2 Encoding Simple Values
        3.1.3 Encoding Compound Values
        3.1.4 Computing the Type Name Property
            3.1.4.1 itemType Attribute Information Item
        3.1.5 Unique identifiers
            3.1.5.1 id Attribute Information Item
            3.1.5.2 ref Attribute Information Item
            3.1.5.3 Constraints on id and ref Attribute Information Items
        3.1.6 arraySize Attribute Information Item
        3.1.7 nodeType Attribute Information Item
    3.2 Decoding Faults
4. SOAP RPC Representation
    4.1 Use of RPC on the World Wide Web
        4.1.1 Identification of RPC Resources
        4.1.2 Distinguishing Resource Retrievals from other RPCs
    4.2 RPC and SOAP Body
        4.2.1 RPC Invocation
        4.2.2 RPC Response
        4.2.3 SOAP Encoding Restriction
    4.3 RPC and SOAP Header
    4.4 RPC Faults
5. A Convention for Describing Features and Bindings
    5.1 Model and Properties
        5.1.1 Properties
        5.1.2 Property Scope
            5.1.2.1 Message Exchange Context
            5.1.2.2 Environment Context
        5.1.3 Properties and Features
6. SOAP-Supplied Message Exchange Patterns and Features
    6.1 Property Conventions for SOAP Message Exchange Patterns
    6.2 SOAP Request-Response Message Exchange Pattern
        6.2.1 SOAP Feature Name
        6.2.2 Description
        6.2.3 State Machine Description
        6.2.4 Fault Handling
    6.3 SOAP Response Message Exchange Pattern



From www.w3c.org  4 7/10/2003

        6.3.1 SOAP Feature Name
        6.3.2 Description
        6.3.3 State Machine Description
        6.3.4 Fault Handling
    6.4 SOAP Web Method Feature
        6.4.1 SOAP Feature Name
        6.4.2 Description
        6.4.3 SOAP Web Method Feature State Machine 
    6.5 SOAP Action Feature
        6.5.1 SOAP Feature Name
        6.5.2 Description
        6.5.3 SOAP Action Feature State Machine 
7. SOAP HTTP Binding
    7.1 Introduction
        7.1.1 Optionality
        7.1.2 Use of HTTP
        7.1.3 Interoperability with non-SOAP HTTP Implementations
        7.1.4 HTTP Media-Type
    7.2 Binding Name
    7.3 Supported Message Exchange Patterns
    7.4 Supported Features
    7.5 MEP Operation
        7.5.1 Behavior of Requesting SOAP Node
            7.5.1.1 Init
            7.5.1.2 Requesting
            7.5.1.3 Sending+Receiving
            7.5.1.4 Receiving
            7.5.1.5 Success and Fail
        7.5.2 Behavior of Responding SOAP Node
            7.5.2.1 Init
            7.5.2.2 Receiving
            7.5.2.3 Receiving+Sending
            7.5.2.4 Sending
            7.5.2.5 Success and Fail
    7.6 Security Considerations
8. References
    8.1 Normative References
    8.2 Informative References

Appendices

A. The application/soap+xml Media Type
    A.1 Registration
    A.2 Security Considerations
    A.3 The action Parameter
B. Mapping Application Defined Names to XML Names
    B.1 Rules for Mapping Application Defined Names to XML Names
    B.2 Examples



From www.w3c.org  5 7/10/2003

C. Using W3C XML Schema with SOAP Encoding (Non-Normative)
    C.1 Validating Using the Minimum Schema
    C.2 Validating Using the SOAP Encoding Schema
    C.3 Validating Using More Specific Schemas
D. Acknowledgements (Non-Normative)

1. Introduction
SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchange of structured 
information in a decentralized, distributed environment. The SOAP specification consists 
of three parts. Part 2 (this document) defines a set of adjuncts that MAY be used with the 
SOAP messaging framework:

1. The SOAP Data Model represents application-defined data structures and values 
as a directed, edge-labeled graph of nodes (see 2. SOAP Data Model).

2. The SOAP Encoding defines a set of rules for encoding instances of data that 
conform to the SOAP Data Model for inclusion in SOAP messages (see 3. SOAP
Encoding).

3. The SOAP RPC Representation defines a convention for how to use the SOAP 
Data Model for representing RPC calls and responses (see 4. SOAP RPC
Representation).

4. The section for describing features and bindings defines a convention for describing 
features and binding in terms of properties and property values (see 5. A
Convention for Describing Features and Bindings).

5. The section on SOAP-Supplied Message Exchange Patterns and Features defines 
a request response message exchange pattern and a message exchange pattern 
supporting non-SOAP requests for SOAP responses, (see 6. SOAP-Supplied
Message Exchange Patterns and Features).

6. The SOAP Web Method feature defines a feature for control of methods used on 
the World Wide Web (see 6.4 SOAP Web Method Feature).

7. The SOAP HTTP Binding defines a binding of SOAP to HTTP (see [RFC 2616]) 
following the rules of the SOAP Protocol Binding Framework, [SOAP Part 1] (see 7.
SOAP HTTP Binding).

SOAP 1.2 Part 0 [SOAP Part 0] is a non-normative document intended to provide an 
easily understandable tutorial on the features of the SOAP Version 1.2 specifications.

SOAP 1.2 Part 1 [SOAP Part 1] defines the SOAP messaging framework.



From www.w3c.org  6 7/10/2003

Note:

In previous versions of this specification the SOAP name was an acronym. This is no 
longer the case.

1.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 
document are to be interpreted as described in RFC 2119 [RFC 2119].

This specification uses a number of namespace prefixes throughout; they are listed in 
Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically 
significant (see XML Infoset [XML InfoSet]).

Namespace names of the general form "http://example.org/..." and 
"http://example.com/..." represent application or context-dependent URIs (see RFC 2396 
[RFC 2396]).

Table 1: Prefixes and Namespaces used in this specification

Prefix Namespace Notes

env "http://www.w3.org/2003/05/soap-
envelope"

Defined by SOAP 1.2 Part 1 [SOAP Part
1].

enc "http://www.w3.org/2003/05/soap-
encoding"

A normative XML Schema [XML
Schema Part 1], [XML Schema Part 2] 
document for the 
"http://www.w3.org/2003/05/soap-
encoding" namespace can be found at 
http://www.w3.org/2003/05/soap-
encoding.

rpc "http://www.w3.org/2003/05/soap-rpc"

A normative XML Schema [XML
Schema Part 1], [XML Schema Part 2] 
document for the 
"http://www.w3.org/2003/05/soap-rpc" 
namespace can be found at 
http://www.w3.org/2003/05/soap-rpc.

xs "http://www.w3.org/2001/XMLSchema"
Defined in the W3C XML Schema 
specification [XML Schema Part 1], 
[XML Schema Part 2].

xsi "http://www.w3.org/2001/XMLSchema-
instance"

Defined in the W3C XML Schema 
specification [XML Schema Part 1], 
[XML Schema Part 2].



From www.w3c.org  7 7/10/2003

This specification uses the Extended Backus-Naur Form (EBNF) as described in XML 1.0 
[XML 1.0].

With the exception of examples and sections explicitly marked as "Non-Normative", all 
parts of this specification are normative.

2. SOAP Data Model
The SOAP Data Model represents application-defined data structures and values as a 
directed edge-labeled graph of nodes. Components of this graph are described in the 
following sections.

The purpose of the SOAP Data Model is to provide a mapping of non-XML based data to 
some wire representation. It is important to note that use of the SOAP Data Model, the 
accompanying SOAP Encoding (see 3. SOAP Encoding), and/or the SOAP RPC 
Representation (see 4. SOAP RPC Representation) is OPTIONAL. Applications which 
already model data in XML may not need to use the SOAP Data Model. Due to their 
optional nature, it is NOT a requirement to implement the SOAP Data Model, the SOAP 
Encoding and/or the SOAP RPC Representation as part of a SOAP node. 

2.1 Graph Edges

Edges in the graph are said to originate at a graph node and terminate at a graph node. 
An edge that originates at a graph node is known as an outbound edge with respect to 
that graph node. An edge that terminates at a graph node is known as an inbound edge 
with respect to that graph node. An edge MAY originate and terminate at the same graph 
node. An edge MAY have only an originating graph node, that is be outbound only. An 
edge MAY have only a terminating graph node, that is be inbound only.

The outbound edges of a given graph node MAY be distinguished by label or by position. 
Position is a total order on such edges; thus, if any outbound edges from a given node 
are distinguished by position, then all outbound edges from that node are so 
distinguished.

2.1.1 Edge labels

An edge label is an XML qualified name. Two edge labels are equal if and only if their 
XML expanded names are equal. I.e. both of the following are true:

1. Their local name values are the same. 

2. Either of the following is true:

1. Both of their namespace name values are missing. 



From www.w3c.org  8 7/10/2003

2. Their namespace name values are both present and are both the same. 

See 2.3 Values for uses of edge labels and position to distinguish the members of 
encoded values, and XML Schema [XML Schema Part 2] for more information about 
comparing XML qualified names. 

2.2 Graph Nodes

A graph node has zero or more outbound edges. A graph node that has no outbound 
edges has an optional lexical value. All graph nodes have an optional type name of type 
xs:QName in the namespace named "http://www.w3.org/2001/XMLSchema" (see XML 
Schema [XML Schema Part 2]).

2.2.1 Single and Multi Reference Nodes

A graph node may be single reference or multi reference. A single reference graph node 
has a single inbound edge. A multi reference graph node has multiple inbound edges. 

2.3 Values

A simple value is represented as a graph node with a lexical value. 

A compound value is represented as a graph node with zero or more outbound edges as 
follows: 

1. A graph node whose outbound edges are distinguished solely by their labels is 
known as a "struct". The outbound edges of a struct MUST be labeled with distinct 
names (see 2.1.1 Edge labels). 

2. A graph node whose outbound edges are distinguished solely by position is known 
as an "array". The outbound edges of an array MUST NOT be labeled. 

3. SOAP Encoding
SOAP Encoding provides a means of encoding instances of data that conform to the data 
model described in 2. SOAP Data Model. This encoding MAY be used to transmit data in 
SOAP header blocks and/or SOAP bodies. Other data models, alternate encodings of the 
SOAP Data Model as well as unencoded data MAY also be used in SOAP messages 
(see SOAP 1.2 Part 1 [SOAP Part 1], SOAP encodingStyle Attribute for specification of 
alternative encoding styles and see 4. SOAP RPC Representation for restrictions on 
data models and encodings used to represent SOAP Remote Procedure Calls (RPC)). 

The serialization rules defined in this section are identified by the URI 
"http://www.w3.org/2003/05/soap-encoding". SOAP messages using this particular 
serialization SHOULD indicate that fact by using the SOAP encodingStyle attribute 



From www.w3c.org  9 7/10/2003

information item (see SOAP 1.2 Part 1 [SOAP Part 1] SOAP encodingStyle Attribute). 

3.1 Mapping between XML and the SOAP Data Model

XML allows very flexible encoding of data. SOAP Encoding defines a narrower set of 
rules for encoding the graphs described in 2. SOAP Data Model. This section defines the 
encoding at a high level, and the subsequent sub-sections describe the encoding rules in 
more detail. The encodings described in this section can be used in conjunction with the 
mapping of RPC requests and responses specified in 4. SOAP RPC Representation. 

The encodings are described below from the perspective of a de-serializer. In each case, 
the presence of an XML serialization is presumed, and the mapping to a corresponding 
graph is described. 

More than one encoding is typically possible for a given graph. When serializing a graph 
for transmission inside a SOAP message, a representation that deserializes to the 
identical graph MUST be used; when multiple such representations are possible, any of 
them MAY be used. When receiving an encoded SOAP message, all representations 
MUST be accepted. 

3.1.1 Encoding Graph Edges and Nodes

Each graph edge is encoded as an element information item and each element 
information item represents a graph edge. 3.1.3 Encoding Compound Values describes 
the relationship between edge labels and the [local name] and [namespace name] 
properties of such element information items. 

The graph node at which an edge terminates is determined by examination of the 
serialized XML as follows:

1. If the element information item representing the edge does not have a ref attribute 
information item (see 3.1.5.2 ref Attribute Information Item) among its attributes 
then that element information item is said to represent a node in the graph and the 
edge terminates at that node. In such cases the element information item 
represents both a graph edge and a graph node

2. If the element information item representing the edge does have a ref attribute 
information item (see 3.1.5.2 ref Attribute Information Item) among its attributes, 
then the value of that attribute information item MUST be identical to the value of 
exactly one id attribute information item ( see 3.1.5.1 id Attribute Information
Item) in the same envelope. In this case the edge terminates at the graph node 
represented by the element information item on which the id attribute information 
item appears. That element information item MUST be in the scope of an 
encodingStyle attribute with a value of "http://www.w3.org/2003/05/soap-
encoding" (see SOAP 1.2 Part 1 [SOAP Part 1], SOAP encodingStyle Attribute). 

All nodes in the graph are encoded as described in 1 above. Additional inbound edges for 



From www.w3c.org  10 7/10/2003

multi reference graph nodes are encoded as described in 2 above. 

3.1.2 Encoding Simple Values

The lexical value of a graph node representing a simple value is the sequence of Unicode 
characters identified by the character information item children of the element information 
item representing that node. The element information item representing a simple value 
node MAY have among its attributes a 'nodeType' attribute information item (see 3.1.7
nodeType Attribute Information Item). Note that certain Unicode characters cannot be 
represented in XML (see XML 1.0 [XML 1.0]). 

3.1.3 Encoding Compound Values

An outbound edge of a graph node is encoded as an element information item child of the 
element information item that represents the node (see 3.1.1 Encoding Graph Edges
and Nodes). Particular rules apply depending on what kind of compound value the graph 
node represents. These rules are as follows:

1. For a graph edge which is distinguished by label, the [local name] and [namespace 
name] properties of the child element information item together determine the value 
of the edge label. 

2. For a graph edge which is distinguished by position:

! The ordinal position of the graph edge corresponds to the position of the child 
element information item relative to its siblings 

! The [local name] and [namespace name] properties of the child element 
information item are not significant. 

3. The element information item representing a compound value node MAY have 
among its attributes a nodeType attribute information item (see 3.1.7 nodeType
Attribute Information Item). 

4. The following rules apply to the encoding of a graph node that represents an 
"array":

! The element information item representing an array node MAY have among 
its attributes an itemType attribute information item (see 3.1.4.1 itemType
Attribute Information Item). 

! The element information item representing an array node MAY have among 
its attributes an arraySize attribute information item (see 3.1.6 arraySize
Attribute Information Item). 

5. If a graph edge does not terminate in a graph node then it can either be omitted 
from the serialization or it can be encoded as an element information item with an 



From www.w3c.org  11 7/10/2003

xsi:nil attribute information item whose value is "true". 

3.1.4 Computing the Type Name Property

The type name property of a graph node is a {namespace name, local name} pair 
computed as follows:

1. If the element information item representing the graph node has an xsi:type 
attribute information item among its attributes then the type name property of the 
graph node is the value of the xsi:type attribute information item.

Note:

This attribute is of type xs:QName (see XML Schema [XML Schema Part 2]); 
its value consists of the pair {namespace name, local name}. Neither the prefix 
used to construct the QName nor any information relating to any definition of 
the type is considered to be part of the value. The SOAP graph carries only the 
qualified name of the type. 

2. Otherwise if the parent element information item of the element information item 
representing the graph node has an enc:itemType attribute information item (see 
3.1.4.1 itemType Attribute Information Item) among its attributes then the type 
name property of the graph node is the value of the enc:itemType attribute 
information item 

3. Otherwise the value of the type name property of the graph node is unspecified. 

Note:

These rules define how the type name property of a graph node in a graph is 
computed from a serialized encoding. This specification does not mandate validation 
using any particular schema language or type system. Nor does it include built in 
types or provide any standardized faults to reflect value/type name conflicts. 

However, nothing prohibits development of additional specifications to describe the 
use of SOAP Encoding with particular schema languages or type systems. Such 
additional specifications MAY mandate validation using particular schema language, 
and MAY specify faults to be generated if validation fails. Such additional 
specifications MAY specify augmentations to the deserialized graph based on 
information determined from such a validation. The use by SOAP Encoding of 
xsi:type is intended to facilitate integration with the W3C XML Schema language (see 
C. Using W3C XML Schema with SOAP Encoding). Other XML based schema 
languages, data schemas and programmatic type systems MAY be used but only to 
the extent that they are compatible with the serialization described in this 
specification. 

3.1.4.1 itemType Attribute Information Item



From www.w3c.org  12 7/10/2003

The itemType attribute information item has the following Infoset properties: 

" A [local name] of itemType . 

" A [namespace name] of "http://www.w3.org/2003/05/soap-encoding". 

" A [specified] property with a value of "true". 

The type of the itemType attribute information item is xs:QName. The value of the 
itemType attribute information item is used to compute the type name property (see 3.1.4
Computing the Type Name Property) of members of an array. 

3.1.5 Unique identifiers

3.1.5.1 id Attribute Information Item

The id attribute information item has the following Infoset properties: 

" A [local name] of id .

" A [namespace name] of "http://www.w3.org/2003/05/soap-encoding".

" A [specified] property with a value of "true".

The type of the id attribute information item is xs:ID. The value of the id attribute 
information item is a unique identifier that can be referred to by a ref attribute information 
item (see 3.1.5.2 ref Attribute Information Item). 

3.1.5.2 ref Attribute Information Item

The ref attribute information item has the following Infoset properties: 

" A [local name] of ref .

" A [namespace name] of "http://www.w3.org/2003/05/soap-encoding".

" A [specified] property with a value of "true".

The type of the ref attribute information item is xs:IDREF. The value of the ref attribute 
information item is a reference to a unique identifier defined by an id attribute information 
item (see 3.1.5.1 id Attribute Information Item). 

3.1.5.3 Constraints on id and ref Attribute Information Items

The value of a ref attribute information item MUST also be the value of exactly one id 



From www.w3c.org  13 7/10/2003

attribute information item. 

A ref attribute information item and an id attribute information item MUST NOT appear 
on the same element information item. 

3.1.6 arraySize Attribute Information Item

The arraySize attribute information item has the following Infoset properties: 

" A [local name] of arraySize . 

" A [namespace name] of "http://www.w3.org/2003/05/soap-encoding". 

The type of the arraySize attribute information item is enc:arraySize. The value of the 
arraySize attribute information item MUST conform to the following EBNF grammar

The array's dimensions are represented by each item in the list of sizes (unspecified size 
in case of the asterisk). The number of items in the list represents the number of 
dimensions in the array. The asterisk, if present, MUST only appear in the first position in 
the list. The default value of the arraySize attribute information item is "*", that is by 
default arrays are considered to have a single dimension of unspecified size.

3.1.7 nodeType Attribute Information Item

The nodeType attribute information item has the following Infoset properties: 

" A [local name] of nodeType . 

" A [namespace name] of "http://www.w3.org/2003/05/soap-encoding". 

" A [specified] property with a value of "true".

The type of the nodeType attribute information item is enc:nodeType.

The value of the nodeType attribute information item MUST, if present, be one of the 
strings "simple" or "struct" or "array". The value indicates what kind of a value this node 
represents - a simple value, a compound struct value or a compound array value 
respectively. 

3.2 Decoding Faults

[1]   arraySizeValue    ::=   ("*" | concreteSize) nextConcreteSize*
[2]   nextConcreteSize    ::=   whitespace concreteSize
[3]   concreteSize    ::=   [0-9]+
[4]   white space    ::=   (#x20 | #x9 | #xD | #xA)+



From www.w3c.org  14 7/10/2003

During deserialization a SOAP receiver: 

" SHOULD generate an "env:Sender" SOAP fault with a subcode of enc:MissingID if 
the message contains a ref attribute information item but no corresponding id 
attribute information item (see 3.1.5.3 Constraints on id and ref Attribute
Information Items). 

" SHOULD generate an "env:Sender" SOAP fault with a subcode of enc:DuplicateID 
if the message contains two or more id attribute information item that have the 
same value. (see 3.1.5.3 Constraints on id and ref Attribute Information Items). 

" MAY generate an "env:Sender" SOAP fault with a subcode of enc:UntypedValue if 
the type name property of an encoded graph node is unspecified. 

4. SOAP RPC Representation
One of the design goals of SOAP is to facilitate the exchange of messages that map 
conveniently to definitions and invocations of method and procedure calls in commonly 
used programming languages. For that purpose, this section defines a uniform 
representation of remote procedure call (RPC) requests and responses. It does not 
define actual mappings to any particular programming language. The representation is 
entirely platform independent and considerable effort has been made to encourage usage 
that is consistent with the Web in general.

As mentioned in section 2. SOAP Data Model, use and implementation of the SOAP 
RPC Representation is OPTIONAL.

The SOAP encodingStyle attribute information item (see SOAP 1.2 Part 1 [SOAP Part 1] 
SOAP encodingStyle Attribute) is used to indicate the encoding style of the RPC 
representation. The encoding thus specified MUST support the 2. SOAP Data Model. 
The encoding style defined in 3. SOAP Encoding supports such constructs and is 
therefore suitable for use with the SOAP RPC Representation. 

This SOAP RPC Representation is not predicated on any SOAP protocol binding. When 
SOAP is bound to HTTP, an RPC invocation maps naturally to an HTTP request and an 
RPC response maps to an HTTP response. (see 7. SOAP HTTP Binding). However, the 
SOAP RPC Representation is not limited to the SOAP HTTP Binding. 

To invoke an RPC, the following information is needed:

" The address of the target SOAP node.

" A procedure or method name.

" The identities and values of any arguments to be passed to the procedure or 



From www.w3c.org  15 7/10/2003

method. Arguments used to identify Web resources SHOULD be distinguished from 
those representing data or control information (see 4.1.1 Identification of RPC
Resources.)

" Values for properties as required by any features of the binding to be used. For 
example, "GET" or "POST" for the 
http://www.w3.org/2003/05/soap/features/web-method/Method property of the 6.4
SOAP Web Method Feature.

" Optional header data.

SOAP RPC relies on the protocol binding to provide a mechanism for carrying the URI of 
the target SOAP node. For HTTP the request URI indicates the resource against which 
the invocation is being made. Other than requiring it to be a valid URI, SOAP places no 
restriction on the form of an identifier (see RFC 2396 [RFC 2396] for more information on 
URIs). The section 4.1.1 Identification of RPC Resources further discusses the use of 
URIs for identifying RPC resources.

The SOAP RPC Representation employs the 6.2 SOAP Request-Response Message
Exchange Pattern and 6.3 SOAP Response Message Exchange Pattern. Use of the 
SOAP RPC Representation with other MEPs MAY be possible, but is beyond the scope 
of this specification.

4.1 Use of RPC on the World Wide Web

The following guidelines SHOULD be followed when deploying SOAP RPC applications 
on the World Wide Web.

4.1.1 Identification of RPC Resources

The World Wide Web identifies resources with URIs, but common programming 
conventions convey identification information in the arguments to procedures, or in the 
names of those procedures. For example, the call:

updateQuantityInStock(PartNumber="123", NewQuantity="200") 

suggests that the resource to be updated is the QuantityInStock for PartNumber "123". 
Accordingly, when mapping to or from a programming language method or procedure 
call, any arguments that serve to identify resources (such as the part number above) 
should when practical be represented in the URI to which the SOAP message is 
addressed. When mapping to or from a programming language method or procedure call, 
the name of which identifies or qualifies the identification of a resource (such as 
QuantityInStock above), such naming or qualification should when practical be 
represented in the URI to which the SOAP message is addressed. No standard means of 
representation of arguments or method names is provided by this specification.

Note:



From www.w3c.org  16 7/10/2003

Conventions for specific URI encodings of procedure names and arguments, as well 
as for controlling the inclusion of such arguments in the SOAP RPC body could be 
established in conjunction with the development of Web Service interface description 
languages. They could be developed when SOAP is bound to particular 
programming languages or could be established on an application or procedure-
specific basis.

4.1.2 Distinguishing Resource Retrievals from other RPCs

The World Wide Web depends on mechanisms that optimize commonly performed 
information retrieval tasks. Specifically, protocols such as HTTP [RFC 2616] provide a 
GET method which is used to perform safe retrievals, i.e. to perform retrievals that are 
idempotent, free of side effects, and for which security considerations do not preclude the 
use of cached results or URI-based resource identification.

Certain procedure or method calls represent requests for information retrieval. For 
example, the call:

getQuantityInStock(PartNumber="123")

might be used to retrieve the quantity established in the example above.

The following conventions can be employed to implement SOAP retrievals and other 
RPCs on the Web: 

" The conventions described in 4.1.1 Identification of RPC Resources are used to 
identify the resource with a URI. 

" In cases where all the arguments have been represented in the URI, no SOAP 
header blocks are to be transmitted and the operation is a safe retrieval, the 6.4
SOAP Web Method Feature and the 6.3 SOAP Response Message Exchange
Pattern are used. Accordingly, no SOAP envelope is transmitted for the request, 
and the http://www.w3.org/2003/05/soap/features/web-method/Method property is 
set to "GET". The results of the retrieval are a SOAP RPC response as described in 
4.2.2 RPC Response

" In cases where the operation to be performed is not a retrieval, when SOAP header 
blocks are to be transmitted (a digital signature, for example), or when a retrieval is 
not safe, the 6.4 SOAP Web Method Feature and the 6.2 SOAP Request-
Response Message Exchange Pattern are used. The request envelope is 
encoded as described in 4.2.1 RPC Invocation, and the results are as described in 
4.2.2 RPC Response. The http://www.w3.org/2003/05/soap/features/web-
method/Method property is set to "POST".

The SOAP RPC Representation does not define any other value for the 
http://www.w3.org/2003/05/soap/features/web-method/Method .



From www.w3c.org  17 7/10/2003

4.2 RPC and SOAP Body

RPC invocations (except for safe retrievals: see 4.1.2 Distinguishing Resource
Retrievals from other RPCs) and responses are both carried in the SOAP Body element 
(see SOAP 1.2 Part 1 [SOAP Part 1] SOAP Body) using the following representation:

4.2.1 RPC Invocation

An RPC invocation is modeled as follows:

" The invocation is represented by a single struct containing an outbound edge for 
each [in] or [in/out] parameter. The struct is named identically to the procedure or 
method name and the conventions of B. Mapping Application Defined Names to
XML Names SHOULD be used to represent method names that are not legal XML 
names.

" Each outbound edge has a label corresponding to the name of the parameter. The 
conventions of B. Mapping Application Defined Names to XML Names SHOULD 
be used to represent parameter names that are not legal XML names.

Applications MAY process invocations with missing parameters but also MAY fail to 
process the invocation and return a fault.

4.2.2 RPC Response

An RPC response is modeled as follows:

" The response is represented by a single struct containing an outbound edge for the 
return value and each [out] or [in/out] parameter. The name of the struct is not 
significant.

" Each parameter is represented by an outbound edge with a label corresponding to 
the name of the parameter. The conventions of B. Mapping Application Defined
Names to XML Names SHOULD be used to represent parameter names that are 
not legal XML names.

" A non-void return value is represented as follows:

1. There MUST be an outbound edge with a local name of result and a 
namespace name of "http://www.w3.org/2003/05/soap-rpc" which terminates 
in a terminal node

2. The type of that terminal node is a xs:QName and its value is the name of the 
outbound edge which terminates in the actual return value. 



From www.w3c.org  18 7/10/2003

If the return value of the procedure is void then an outbound edge with a local name 
of result and a namespace name of "http://www.w3.org/2003/05/soap-rpc" MUST 
NOT be present.

" Invocation faults are handled according to the rules in 4.4 RPC Faults. If a protocol 
binding adds additional rules for fault expression, those MUST also be followed.

4.2.3 SOAP Encoding Restriction

When using SOAP encoding (see 3. SOAP Encoding) in conjunction with the RPC 
convention described here, the SOAP Body MUST contain only a single child element 
information item, that child being the serialized RPC invocation or response struct.

4.3 RPC and SOAP Header

Additional information relevant to the encoding of an RPC invocation but not part of the 
formal procedure or method signature MAY be expressed in a SOAP envelope carrying 
an RPC invocation or response. Such additional information MUST be expressed as 
SOAP header blocks.

4.4 RPC Faults

The SOAP RPC Representation introduces additional SOAP fault subcode values to be 
used in conjunction with the fault codes described in SOAP 1.2 Part 1 [SOAP Part 1] 
SOAP Fault Codes.

Errors arising during RPC invocations are reported according to the following rules:

1. A fault with a Value of Code set to "env:Receiver" SHOULD be generated when the 
receiver cannot handle the message because of some temporary condition, e.g. 
when it is out of memory.

Note:

Throughout this document, the term "Value of Code " is used as a shorthand for 
"value of the Value child element information item of the Code element 
information item" (see SOAP 1.2 Part 1 [SOAP Part 1], SOAP Code Element ).

2. A fault with a Value of Code set to "env:DataEncodingUnknown" SHOULD be 
generated when the arguments are encoded in a data encoding unknown to the 
receiver.

3. A fault with a Value of Code set to "env:Sender" and a Value of Subcode set to 
"rpc:ProcedureNotPresent" MAY be generated when the receiver does not support 
the procedure or method specified.



From www.w3c.org  19 7/10/2003

Note:

Throughout this document, the term "Value of Subcode " is used as a shorthand 
for "value of the Value child element information item of the Subcode element 
information item" (see SOAP 1.2 Part 1 [SOAP Part 1], SOAP Subcode
element).

4. A fault with a Value of Code set to "env:Sender" and a Value of Subcode set to 
"rpc:BadArguments" MUST be generated when the receiver cannot parse the 
arguments or when there is a mismatch in number and/or type of the arguments 
between what the receiver expects and what was sent.

5. Other faults arising in an extension or from the application SHOULD be generated 
as described in SOAP 1.2 Part 1 [SOAP Part 1] SOAP Fault Codes.

In all cases the values of the Detail and Reason element information items are 
implementation defined. Details of their use MAY be specified by an external document.

Note:

Senders might receive different faults from those listed above in response to an RPC 
invocation if the receiver does not support the (optional) RPC convention described 
here.

5. A Convention for Describing Features and Bindings
This section describes a convention describing Features (including MEPs) and Bindings 
in terms of properties and property values. The convention is sufficient to describe the 
distributed states of Feature and Binding specifications as mandated by the Binding 
Framework (see SOAP 1.2 Part 1 [SOAP Part 1] SOAP Protocol Binding Framework) 
and it is used to describe a Request-Response MEP (see 6.2 SOAP Request-Response
Message Exchange Pattern), a Response MEP (see 6.3 SOAP Response Message
Exchange Pattern), the SOAP Web Method feature (see 6.4 SOAP Web Method
Feature) and the SOAP HTTP Binding (see 7. SOAP HTTP Binding) elsewhere in this 
document. Along with the convention itself, an informal model is defined that describes 
how properties propagate through a SOAP system. Note that this model is intended to be 
illustrative only, and is not meant to imply any constraints on the structure or layering of 
any particular SOAP implementation.

5.1 Model and Properties

In general, a SOAP message is the information that one SOAP node wishes to exchange 
with another SOAP node according to a particular set of features, including a MEP. In 
addition, there may be information essential to exchanging a message that is not part of 
the message itself. Such information is sometimes called message metadata. In the 



From www.w3c.org  20 7/10/2003

model, the message, any message metadata, and the various information items that 
enable features are represented as abstractions called properties.

5.1.1 Properties

Under the convention, properties are represented as follows:

" Properties are named with URIs.

" Where appropriate, property values SHOULD have an XML Schema [XML Schema
Part 1] [XML Schema Part 2] type listed in the specification which introduces the 
property.

5.1.2 Property Scope

Properties within a SOAP node differ in terms of their scope and the origins of their 
values. As shown in the figure below, we make the distinction between per message-
exchange and more widely scoped properties by assigning them to different containers 
called Message Exchange Context and Environment Context respectively. All properties, 
regardless of their scope, are shared by a SOAP node and a particular Binding.



From www.w3c.org  21 7/10/2003

 

Figure 1: Model describing properties shared between SOAP and Binding

5.1.2.1 Message Exchange Context

A message exchange context is a collection of properties whose scope is limited to an 
instance of a given message exchange pattern. An example of a message exchange 
context property is the identifier of the message exchange pattern in use.

5.1.2.2 Environment Context

The environment context is a collection of properties whose scope extends beyond an 
instance of a given message exchange pattern. Examples of environment context 
properties are the IP address of the SOAP node or the current date and time.

The values of properties in Environment may depend upon local circumstances (as 
depicted by the external arrow from Environment in the figure above). More specifically, 
the properties in the example could be influenced by an operating system user ID on 
whose behalf a message exchange is being executed. The mapping of information in a 
particular implementation to such properties is outside the scope of the binding 
framework although the abstract representation of such information as properties is not.

5.1.3 Properties and Features

A feature may be expressed through multiple properties and a single property may 
enable more than one feature. For example, the properties called User ID and Password 
may be used to enable a feature called Authentication. As a second example, a single 
property called Message ID could be used to enable one feature called Transaction and a 
second feature called Message Correlation.

6. SOAP-Supplied Message Exchange Patterns and Features

6.1 Property Conventions for SOAP Message Exchange Patterns

Table 2 describes the properties (in accordance with the property naming conventions 
defined in this document) that support the description of message exchange patterns 
(MEPs). Other properties may be involved in the specification of particular MEPs, but the 
properties in this table are generally applicable to all MEPs.



From www.w3c.org  22 7/10/2003

Table 2: Property definitions supporting the description of MEPs

Property Name

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/FailureReason 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role 



From www.w3c.org  23 7/10/2003

6.2 SOAP Request-Response Message Exchange Pattern

This section defines the message exchange pattern (MEP) called "Request-Response". 
The description is an abstract presentation of the operation of this MEP. It is not intended 
to describe a real implementation or to suggest how a real implementation should be 
structured.

6.2.1 SOAP Feature Name

This message exchange pattern is identified by the URI (see SOAP 1.2 Part 1 [SOAP
Part 1] SOAP Features):

" "http://www.w3.org/2003/05/soap/mep/request-response/"

6.2.2 Description

The SOAP Request-Response MEP defines a pattern for the exchange of a SOAP 
message acting as a request followed by a SOAP message acting as a response. In the 
absence of failure in the underlying protocol, this MEP consists of exactly two SOAP 
messages.

In the normal operation of a message exchange conforming to the Request-Response 
MEP, a request message is first transferred from the requesting SOAP node to the 
responding SOAP node. Following the successful processing of the request message by 
the responding SOAP node, a response message is transferred from the responding 
SOAP node to the requesting SOAP node. 

Abnormal operation during a Request-Response message exchange might be caused by 
a failure to transfer the request message, a failure at the responding SOAP node to 
process the request message, or a failure to transfer the response message. Such 
failures might be silent at either or both of the requesting and responding SOAP nodes 
involved, or might result in the generation of a SOAP or binding-specific fault (see 6.2.4
Fault Handling). Also, during abnormal operation each SOAP node involved in the 
message exchange might differ in its determination of the successful completion of the 
message exchange. 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State 



From www.w3c.org  24 7/10/2003

The scope of a Request-Response MEP is limited to the exchange of a request message 
and a response message between one requesting and one responding SOAP node. This 
pattern does not mandate any correlation between multiple requests nor specific timing 
for multiple requests. Implementations MAY choose to support multiple ongoing requests 
(and associated response processing) at the same time.

6.2.3 State Machine Description

The Request-Response MEP defines a set of properties described in Table 3.

Table 3: Property definitions for Request-Response MEP

Property Name Property 
Description

Property 
Type

http://www.w3.org/2003/05/soap/mep/OutboundMessage 

An abstract 
structure that 
represents 
the current 
outbound 
message in 
the message 
exchange. 
This 
abstracts 
both SOAP 
Envelope 
and any 
other 
information 
structures 
that are 
transferred 
along with 
the envelope.

Not 
specified

http://www.w3.org/2003/05/soap/mep/InboundMessage 

An abstract 
structure that 
represents 
the current 
inbound 
message in 
the message 
exchange. 
This 
abstracts 
both SOAP 
Envelope 

Not 
specified



From www.w3c.org  25 7/10/2003

To initiate a message exchange conforming to the Request-Response MEP, the 
requesting SOAP node instantiates a local message exchange context. Table 4 
describes how the context is initialized.

There may be other properties related to the operation of the message exchange context 
instance. Such properties are initialized according to their own feature specifications. 

Once the message exchange context is initialized, control of the context is passed to a 
(conforming) local binding instance. 

and any 
other 
information 
structures 
that are 
transferred 
along with 
the envelope.

http://www.w3.org/2003/05/soap/mep/ImmediateDestination

The identifier 
of the 
immediate 
destination of 
an outbound 
message.

xs:anyURI

http://www.w3.org/2003/05/soap/mep/ImmediateSender 

The identifier 
of the 
immediate 
sender of an 
inbound 
message.

xs:anyURI

Table 4: Instan

Property Name

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/FailureReason 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State 

http://www.w3.org/2003/05/soap/mep/OutboundMessage 

http://www.w3.org/2003/05/soap/mep/ImmediateDestination 



From www.w3c.org  26 7/10/2003

The diagram below shows the logical state transitions at the requesting and responding 
SOAP nodes during the lifetime of the message exchange. At each SOAP node, the local 
binding instance updates (logically) the value of the 
http://www.w3.org/2003/05/soap/bindingFramework/ ExchangeContext/State property 
to reflect the current state of the message exchange. The state names are relative URIs, 
relative to a base URI value carried in the 
http://www.w3.org/2003/05/soap/bindingFramework/ ExchangeContext/Role property of 
the local message exchange context.

 

Figure 2: Request-Response MEP State Transition Diagram.

When the local binding instance at the responding SOAP node starts to receive an 
inbound request message, it (logically) instantiates a message exchange context. Table
5 describes the properties that the binding initializes as part of the context's instantiation.

Table 5: Instantiation of Messa

Property Name

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/FailureReason 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role 



From www.w3c.org  27 7/10/2003

When the requesting and responding SOAP nodes transition between states, the local 
binding instance (logically) updates a number of properties. Table 6 and Table 7 describe 
these updates for the requesting and the responding SOAP nodes, respectively.

 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State 

Table 6: Requesting SOAP Node State Tran

CurrentState Transition 
Condition

NextState

"Init" Unconditional "Requesting" Initiate transmission of request m
http://www.w3.org/2003/05/soa

"Requesting" Message 
transmission 
failure

"Fail" Set 
http://www.w3.org/2003/05/soa

to "transmissionFailure"
Start 
receiving 
response 
message

"Sending+Receiving" Set http://www.w3.org/2003/05/
the response message (may diffe
http://www.w3.org/2003/05/soa

abstraction of the response mess
http://www.w3.org/2003/05/soa

"Sending+Receiving" Message 
exchange 
failure

"Fail" Set 
http://www.w3.org/2003/05/soa

to "exchangeFailure"
Completed 
sending 
request 
message. 
Completed 
receiving 
response 
message.

"Success"  

Table 7: Responding S

CurrentState Transition Condition NextS
"Init" Start receiving request message "Receiving"



From www.w3c.org  28 7/10/2003

Bindings that implement this MEP MAY provide for streaming of SOAP responses. That 
is, responding SOAP nodes MAY begin transmission of a SOAP response while a SOAP 
request is still being received and processed. When SOAP nodes implement bindings 
that support streaming, the following rules apply:

" All the rules in SOAP 1.2 Part 1 [SOAP Part 1] Binding Framework regarding 
streaming of individual SOAP messages MUST be obeyed for both request and 
response SOAP messages.

" When using streaming SOAP bindings, requesting SOAP nodes MUST avoid 
deadlock by accepting and if necessary processing SOAP response information 
while the SOAP request is being transmitted.

Note:

Depending on the implementation used and the size of the messages involved, 
this rule MAY require that SOAP applications stream application-level response 
processing in parallel with request generation.

" A requesting SOAP node MAY enter the "Fail" state, and thus abort transmission of 
the outbound SOAP request, based on information contained in an incoming 
streamed SOAP response.

6.2.4 Fault Handling

During the operation of the Request-Response MEP, the participating SOAP nodes may 
generate SOAP faults.

If a SOAP fault is generated by the responding SOAP node while it is in the "Receiving" 
state, the SOAP fault is made available in 
http://www.w3.org/2003/05/soap/mep/OutboundMessage and the state machine 
transitions to the "Receiving+Sending" state.

This MEP makes no claims about the disposition or handling of SOAP faults generated 
by the requesting SOAP node during any processing of the response message that 

"Receiving" Message reception failure "Fail"

Start of response message available in 
http://www.w3.org/2003/05/soap/mep/OutboundMessage

"Receiving+

"Receiving+Sending" Message exchange failure "Fail" 

Completed receiving request message. Completed 
sending response message.

"Success"



From www.w3c.org  29 7/10/2003

follows the "Success" state in the requesting SOAP node's state transition table (see 
Table 6).

6.3 SOAP Response Message Exchange Pattern

This section defines the message exchange pattern (MEP) called "SOAP Response". 
The description is an abstract presentation of the operation of this MEP. It is not intended 
to describe a real implementation or to suggest how a real implementation should be 
structured.

6.3.1 SOAP Feature Name

This message exchange pattern is identified by the URI (see SOAP 1.2 Part 1 [SOAP
Part 1] SOAP Features):

" "http://www.w3.org/2003/05/soap/mep/soap-response/" 

6.3.2 Description

The SOAP Response MEP defines a pattern for the exchange of a non-SOAP message 
acting as a request followed by a SOAP message acting as a response. In the absence 
of failure in the underlying protocol, this MEP consists of exactly two messages, only one 
of which is a SOAP message:

" A request transmitted in a binding-specific manner that does not include a SOAP 
envelope and hence does not involve any SOAP processing by the receiving SOAP 
node.

" A response message which contains a SOAP envelope. The MEP is completed by 
the processing of the SOAP envelope following the rules of the SOAP processing 
model (see SOAP 1.2 Part 1 [SOAP Part 1], section SOAP Processing Model). 

Abnormal operation during a SOAP Response message exchange might be caused by a 
failure to transfer the request message or the response message. Such failures might be 
silent at either or both of the requesting and responding SOAP nodes involved, or might 
result in the generation of a SOAP or binding-specific fault (see section 6.3.4 Fault
Handling). Also, during abnormal operation each SOAP node involved in the message 
exchange might differ in its determination of the successful completion of the message 
exchange. 

The scope of a SOAP Response MEP is limited to the request for an exchange of a 
response message between one requesting and one responding SOAP node. This 
pattern does not mandate any correlation between multiple requests nor specific timing 
for multiple requests. Implementations MAY choose to support multiple ongoing requests 
(and associated response processing) at the same time.

Note:



From www.w3c.org  30 7/10/2003

This MEP cannot be used in conjunction with features expressed as SOAP header 
blocks in the request because there is no SOAP envelope in which to carry them.

6.3.3 State Machine Description

The SOAP Response MEP defines a set of properties described in Table 8.

Table 8: Property definitions for SOAP Response MEP

Property Name Property 
Description

Property 
Type

http://www.w3.org/2003/05/soap/mep/OutboundMessage 

An abstract 
structure that 
represents 
the current 
outbound 
message in 
the message 
exchange. 
This 
abstracts 
both SOAP 
Envelope 
Infoset 
(which MAY 
be null) and 
any other 
information 
structures 
that are 
transferred 
along with 
the envelope.

Not 
specified

http://www.w3.org/2003/05/soap/mep/InboundMessage 

An abstract 
structure that 
represents 
the current 
inbound 
message in 
the message 
exchange. 
This 
abstracts 
both SOAP 
Envelope 
Infoset 

Not 
specified



From www.w3c.org  31 7/10/2003

To initiate a message exchange conforming to the SOAP Response MEP, the requesting 
SOAP node instantiates a local message exchange context. Table 9 describes how the 
context is initialized.

There may be other properties related to the operation of the message exchange context 
instance. Such properties are initialized according to their own feature specifications. 

(which MAY 
be null) and 
any other 
information 
structures 
that are 
transferred 
along with 
the envelope. 

http://www.w3.org/2003/05/soap/mep/ImmediateDestination

The identifier 
of the 
immediate 
destination of 
an outbound 
message.

xs:anyURI

http://www.w3.org/2003/05/soap/mep/ImmediateSender 

The identifier 
of the 
immediate 
sender of an 
inbound 
message.

xs:anyURI

Table 9: Instanti

Property Name

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/FailureReason 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State 

http://www.w3.org/2003/05/soap/mep/OutboundMessage 

http://www.w3.org/2003/05/soap/mep/ImmediateDestination 



From www.w3c.org  32 7/10/2003

Once the message exchange context is initialized, control of the context is passed to a 
(conforming) local binding instance. 

The diagram below shows the logical state transitions at the requesting and responding 
SOAP nodes during the lifetime of the message exchange. At each SOAP node, the local 
binding instance updates (logically) the value of the 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State property to 
reflect the current state of the message exchange. The state names are relative URIs, 
relative to a Base URI value carried in the 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role property of 
the local message exchange context.

 

Figure 3: SOAP Response MEP State Transition Diagram

When the local binding instance at the responding SOAP node starts to receive an 
inbound request message, it (logically) instantiates a message exchange context. Table
10 describes the properties that the binding initializes as part of the context's 
instantiation.

Table 10: Instantia

Property Name

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/FailureReason 



From www.w3c.org  33 7/10/2003

When the requesting and responding SOAP nodes transition between states, the local 
binding instance (logically) updates a number of properties. Table 11 and Table 12 
describe these updates for the requesting and the responding SOAP nodes, respectively.

 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role 

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State 

Table 11: Requesting SOAP Node State Transitions

CurrentState Transition 
Condition

NextState Action

"Init" Unconditional "Requesting" Initiate request
"Requesting" Message 

transmission 
failure

"Fail" Set 
http://www.w3.org/2003/05/soap/bindingFrame

to "transmissionFailure" 
Start 
receiving 
response 
message

"Receiving" Set http://www.w3.org/2003/05/soap/mep/Imme
the response message (may differ from the value
http://www.w3.org/2003/05/soap/mep/Immediat

abstraction of the response message available in
http://www.w3.org/2003/05/soap/mep/InboundM

"Receiving" Message 
exchange 
failure

"Fail" Set 
http://www.w3.org/2003/05/soap/bindingFrame

to "exchangeFailure" 
Completed 
receiving 
response 
message.

"Success"  

Table 12: Responding SOAP No

CurrentState Transition Condition NextState
"Init" Start receiving request "Receiving" Set htt

the req
SOAP 



From www.w3c.org  34 7/10/2003

6.3.4 Fault Handling

During the operation of the SOAP Response MEP, the participating SOAP nodes may 
generate SOAP faults.

If a SOAP fault is generated by the responding SOAP node while it is in the "Receiving" 
state, the SOAP fault is made available in 
http://www.w3.org/2003/05/soap/mep/OutboundMessage and the state machine 
transitions to the "Sending" state.

This MEP makes no claims about the disposition or handling of SOAP faults generated 
by the requesting SOAP node during any processing of the response message that 
follows the "Success" state in the requesting SOAP node's state transition table (see 
Table 11).

6.4 SOAP Web Method Feature

This section defines the "SOAP Web Method Feature".

6.4.1 SOAP Feature Name

The SOAP Web Method feature is identified by the URI (see SOAP 1.2 Part 1 [SOAP
Part 1] SOAP Features):

" "http://www.w3.org/2003/05/soap/features/web-method/" 

6.4.2 Description

Underlying protocols designed for use on the World Wide Web provide for manipulation 
of resources using a small set of Web methods such as GET, PUT, POST, and DELETE. 
These methods are formally defined in the HTTP specification [RFC 2616], but other 
underlying protocols might also support them. Bindings to HTTP or such other protocols 
SHOULD use the SOAP Web Method feature to give applications control over the Web 
methods to be used when sending a SOAP message.

"Receiving" Message reception failure "Fail" Set 
http:/

to "rece
Start of response message available in 
http://www.w3.org/2003/05/soap/mep/OutboundMessage 

"Sending" Initiate 
http:/

"Sending" Message exchange failure "Fail" Set 
http:/

to "exc
Completed sending response message. "Success"  



From www.w3c.org  35 7/10/2003

Bindings supporting this feature SHOULD use the appropriate embodiment of that 
method if provided by the underlying protocol; for example, the HTTP binding provided 
with this specification represents the "GET" Web method as an HTTP GET request, and 
the "POST" method as an HTTP POST request (see 7. SOAP HTTP Binding). Bindings 
supporting this feature SHOULD provide to the receiving node indication of the Web 
method used for transmission.

The SOAP Web Method feature MAY be implemented by bindings to underlying 
transports that have no preferred embodiment of particular Web methods (e.g. do not 
distinguish GET from POST). Such bindings SHOULD provide to the receiving node 
indication of the Web method used for transmission, but need take no other action in 
support of the feature. 

6.4.3 SOAP Web Method Feature State Machine 

The SOAP Web Method feature defines a single property, which is described in Table 13.

This specification provides for the use of the SOAP Web Method feature in conjunction 
with the 6.2 SOAP Request-Response Message Exchange Pattern and 6.3 SOAP
Response Message Exchange Pattern message exchange patterns. This feature MAY 
be used with other MEPs if and only if provided for in the specifications of those MEPs.

A node sending a request message MUST provide a value for the 
http://www.w3.org/2003/05/soap/features/web-method/Method property. A protocol 
binding supporting this feature SHOULD set the value of the 
http://www.w3.org/2003/05/soap/features/web-method/Method property at the receiving 
node to match that provided by the sender; the means of transmission for the method 
property is binding-specific.

A responding node SHOULD respond in a manner consistent with the Web method 
requested (e.g. a "GET" should result in retrieval of a representation of the identified 
resource) or SHOULD fault in an application-specific manner if the Web method cannot 
be supported. 

Bindings implementing this feature MUST employ a Message Exchange Pattern with 

Table 13: Property definition for the SOAP Web Method feature

Property Name Property Description Property 
Type

http://www.w3.org/2003/05/soap/features/web-

method/Method 

One of "GET", "POST", 
"PUT", "DELETE" (or 
others which may 
subsequently be added 
to the repertoire of Web 
methods.)

Not 
specified



From www.w3c.org  36 7/10/2003

semantics that are compatible with the Web method selected. For example, the SOAP 
Response Message Exchange Pattern (see 6.3 SOAP Response Message Exchange
Pattern) is compatible with GET.

6.5 SOAP Action Feature

This section defines the "SOAP Action Feature".

6.5.1 SOAP Feature Name

The SOAP Action feature is identified by the URI (see SOAP 1.2 Part 1 [SOAP Part 1] 
SOAP Features):

" "http://www.w3.org/2003/05/soap/features/action/" 

6.5.2 Description

Many SOAP 1.2 underlying protocol bindings will likely utilize the "application/soap+xml" 
media type (described in A. The application/soap+xml Media Type) to transmit XML 
serializations of SOAP messages. The media type specifies an optional action 
parameter (see A.3 The action Parameter), which can be used to optimize dispatch or 
routing, among other things. The Action Feature specifies well-known URIs to indicate 
support for the action parameter in bindings which use MIME, and also to refer to value 
of the parameter itself. 

6.5.3 SOAP Action Feature State Machine 

The SOAP Action feature defines a single property, which is described in Table 14.

If the http://www.w3.org/2003/05/soap/features/action/Action property has a value at 
a SOAP sender utilizing a binding supporting this feature, the sender MUST use the 
property value as the value of the action parameter in the media type designator.

Conversely, if a value arrives in the action parameter of the media type designator at a 
SOAP receiver, the receiver MUST make that value available as the value of the 
http://www.w3.org/2003/05/soap/features/action/Action property.

7. SOAP HTTP Binding

7.1 Introduction

Table 14: Property definition for the SOAP Action feature

Property Name Property Type
http://www.w3.org/2003/05/soap/features/action/Action xsd:anyURI 



From www.w3c.org  37 7/10/2003

The SOAP HTTP Binding provides a binding of SOAP to HTTP. The binding conforms to 
the SOAP Protocol Binding Framework (see SOAP 1.2 Part 1 [SOAP Part 1] SOAP
Protocol Binding Framework) and supports the message exchange patterns and features 
described in 6. SOAP-Supplied Message Exchange Patterns and Features.

7.1.1 Optionality

The SOAP HTTP Binding is optional and SOAP nodes are NOT required to implement it. 
A SOAP node that correctly and completely implements the SOAP HTTP Binding may to 
be said to "conform to the SOAP 1.2 HTTP Binding."

The SOAP version 1.2 specification does not preclude development of other bindings to 
HTTP or bindings to other protocols, but communication with nodes using such other 
bindings is not a goal. Note that other bindings of SOAP to HTTP MAY be written to 
provide support for SOAP Message exchange patterns other than 6.2 SOAP Request-
Response Message Exchange Pattern or the 6.3 SOAP Response Message
Exchange Pattern. Such alternate bindings MAY therefore make use of HTTP features 
and status codes not required for this binding. For example, another binding might 
provide for a 202 or 204 HTTP response status to be returned in response to an HTTP 
POST or PUT (e.g. a one-way "push" MEP with confirmation).

7.1.2 Use of HTTP

The SOAP HTTP binding defines a base URI according to the rules in HTTP/1.1 [RFC
2616]. I.e. the base URI is the HTTP Request-URI or the value of the HTTP Content-
Location header field.

This binding of SOAP to HTTP is intended to make appropriate use of HTTP as an 
application protocol. For example, successful responses are sent with status code 200, 
and failures are indicated as 4XX or 5XX. This binding is not intended to fully exploit the 
features of HTTP, but rather to use HTTP specifically for the purpose of communicating 
with other SOAP nodes implementing the same binding. Therefore, this HTTP binding for 
SOAP does not specify the use and/or meaning of all possible HTTP methods, header 
fields and status responses. It specifies only those which are pertinent to the 6.2 SOAP
Request-Response Message Exchange Pattern or the 6.3 SOAP Response Message
Exchange Pattern, or which are likely to be introduced by HTTP mechanisms (such as 
proxies) acting between the SOAP nodes.

Certain optional features provided by this binding depend on capabilities provided by 
HTTP/1.1, for example content negotiation. Implementations SHOULD thus use 
HTTP/1.1 [RFC 2616] (or later compatible versions that share the same major version 
number). Implementations MAY also be deployed using HTTP/1.0, although in this case 
certain optional binding features may not be provided.

Note:



From www.w3c.org  38 7/10/2003

SOAP HTTP Binding implementations need to account for the fact that HTTP/1.0 
intermediaries (which may or may not also be SOAP intermediaries) may alter the 
representation of SOAP messages, even in situations where both the initial SOAP 
sender and ultimate SOAP receiver use HTTP/1.1.

7.1.3 Interoperability with non-SOAP HTTP Implementations

Particularly when used with the 6.3 SOAP Response Message Exchange Pattern, the 
HTTP messages produced by this binding are likely to be indistinguishable from those 
produced by non-SOAP implementations performing similar operations. Accordingly, 
some degree of interoperation can be made possible between SOAP nodes and other 
HTTP implementations when using this binding. For example, a conventional Web server 
(i.e. one not written specifically to conform to this specification) might be used to respond 
to SOAP-initiated HTTP GET's with representations of Content-Type 
"application/soap+xml". Such interoperation is not a normative feature of this 
specification. 

Even though HTTP often is used on the well-known TCP port 80, the use of HTTP is not 
limited to that port. As a result, it is possible to have a dedicated HTTP server for 
handling SOAP processing on a distinct TCP port. Alternatively, it is possible to use a 
separate virtual host for dealing with SOAP processing. Such configuration, however, is a 
matter of convenience and is not a requirement of this specification (see SOAP 1.2 Part 1 
[SOAP Part 1] Binding to Application-Specific Protocols).

7.1.4 HTTP Media-Type

Conforming implementations of this binding:

1. MUST be capable of sending and receiving messages serialized using media type 
"application/soap+xml" whose proper use and parameters are described in A. The
application/soap+xml Media Type.

2. MAY send requests and responses using other media types providing that such 
media types provide for at least the transfer of SOAP XML Infoset.

3. MAY, when sending requests, provide an HTTP Accept header field. This header 
field:

! SHOULD indicate an ability to accept at minimum "application/soap+xml".

! MAY additionally indicate willingness to accept other media types that satisfy 
2 above.

7.2 Binding Name

This binding is identified by the URI (see SOAP 1.2 Part 1 [SOAP Part 1] SOAP Protocol



From www.w3c.org  39 7/10/2003

Binding Framework):

" "http://www.w3.org/2003/05/soap/bindings/HTTP/"

7.3 Supported Message Exchange Patterns

An implementation of the SOAP HTTP Binding MUST support the following message 
exchange patterns (MEPs):

" "http://www.w3.org/2003/05/soap/mep/request-response/" (see 6.2 SOAP Request-
Response Message Exchange Pattern) 

" "http://www.w3.org/2003/05/soap/mep/soap-response/" (see 6.3 SOAP Response
Message Exchange Pattern) 

7.4 Supported Features

An implementation of the SOAP HTTP Binding MUST support the following features:

" "http://www.w3.org/2003/05/soap/features/web-method/" (see 6.4 SOAP Web
Method Feature) 

" "http://www.w3.org/2003/05/soap/features/action/" (see 6.5 SOAP Action Feature) 

The possible values of http://www.w3.org/2003/05/soap/features/web-method/Method 
property are restricted in this HTTP binding according to the MEP in use (as present in 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNam

Note:

other SOAP Version 1.2 bindings to HTTP may permit other combinations of 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatter

and http://www.w3.org/2003/05/soap/features/web-method/Method .

7.5 MEP Operation

For binding instances conforming to this specification:

Table 15: Possible values of the Web-Method Meth

http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/ExchangePatternNa

"http://www.w3.org/2003/05/soap/mep/request-response/"
"http://www.w3.org/2003/05/soap/mep/soap-response/"



From www.w3c.org  40 7/10/2003

" A SOAP node instantiated at an HTTP client may assume the role (i.e. the property 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role ) of 
"RequestingSOAPNode".

" A SOAP node instantiated at an HTTP server may assume the role (i.e. the 
property 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role ) of 
"RespondingSOAPNode". 

The remainder of this section describes the MEP state machine and its relation to the 
HTTP protocol. In the state tables below, the states are defined as values of the property 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State (see 6.2
SOAP Request-Response Message Exchange Pattern and 6.3 SOAP Response
Message Exchange Pattern), and are of type xs:anyURI . For brevity, relative URIs are 
used, the base URI being the value of 
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role .

The message exchange pattern in use is indicated by the HTTP method used in the 
request. HTTP GET corresponds to the SOAP-Response MEP, HTTP POST 
corresponds to the SOAP Request-Response MEP.

7.5.1 Behavior of Requesting SOAP Node

The overall flow of the behavior of a requesting SOAP node follows a state machine 
description consistent with either 6.2 SOAP Request-Response Message Exchange
Pattern or 6.3 SOAP Response Message Exchange Pattern (differences are indicated 
as necessary.) This binding supports streaming and, as a result, requesting SOAP nodes 
MUST avoid deadlock by accepting and if necessary processing SOAP response 
information while the SOAP request is being transmitted (see 6.2.3 State Machine
Description). The following subsections describe each state in detail.

7.5.1.1 Init

In the "Init" state, a HTTP request is formulated according to Table 16 and transmission 
of the request is initiated.

Table 16: HTTP Request Fields

Field Value

HTTP 
Method

According to the http://www.w3.org/2003/05/soap/features/web-
method/Method property. POST and GET are the only values supported by 
this binding.

Request 
URI

The value of the URI carried in the 
http://www.w3.org/2003/05/soap/mep/ImmediateDestination property of 
the message exchange context.



From www.w3c.org  41 7/10/2003

7.5.1.2 Requesting

In the "Requesting" state, sending of the request continues while waiting for the start of 
the response message. Table 17 details the transitions that take place when a requesting 
SOAP node receives an HTTP status line and response header fields. For some status 
codes there is a choice of possible next state. In cases where "Fail" is one of the choices, 
the transition is dependent on whether a SOAP message is present in the HTTP 
response. If a SOAP message is present, the next state is "Sending+Receiving" or 
"Receiving", otherwise the next state is "Fail". The choice between "Sending+Receiving" 
and "Receiving" depends of the MEP in use: "Sending+Receiving" is the next state for 
Request-Response while "Receiving" is the next state for SOAP-Response.

Content-
Type 
header 
field

The media type of the request entity body (if present) otherwise, omitted 
(see 7.1 Introduction for a description of permissible media types). If the 
SOAP envelope infoset in the 
http://www.w3.org/2003/05/soap/mep/OutboundMessage property is null, 
then the Content-Type header field MAY be omitted.

action 
parameter

According to the value of the 
http://www.w3.org/2003/05/soap/features/action/Action property.

Accept 
header 
field 
(optional)

List of media types that are acceptable in response to the request message.

Additional 
header 
fields

Generated in accordance with the rules for the binding specific expression 
of any optional features in use for this message exchange. For example, a 
Content-Encoding header field (see HTTP [RFC 2616], section 14.11) may 
be used to express an optional compression feature.

HTTP 
entity body

SOAP message serialized according to the rules for carrying SOAP 
messages in the media type given by the Content-Type header field. Rules 
for carrying SOAP messages in media type "application/soap+xml" are 
given in A. The application/soap+xml Media Type. If the SOAP envelope 
infoset in the http://www.w3.org/2003/05/soap/mep/OutboundMessage 
property is null, the entity body is omitted

Table 17: HTTP status code dependent transitions

Status 
Code

Reason 
phrase

Significance/Action N

2xx Successful   
200 OK The response message follows in HTTP response entity body. 

Start making an abstraction of the response message 
available in 
http://www.w3.org/2003/05/soap/mep/InboundMessage .

"Send
or "Re



From www.w3c.org  42 7/10/2003

Table 17 refers to some but not all of the existing HTTP/1.1 [RFC 2616] status codes. In 
addition to these status codes, HTTP provides an open-ended mechanism for supporting 
status codes defined by HTTP extensions (see RFC 2817 [RFC 2817] for a registration 
mechanism for new status codes). HTTP status codes are divided into status code 
classes as described in HTTP [RFC 2616], section 6.1.1. The SOAP HTTP binding 
follows the rules of any HTTP application which means that an implementation of the 
SOAP HTTP binding must understand the class of any status code, as indicated by the 
first digit, and treat any unrecognized response as being equivalent to the x00 status 
code of that class, with the exception that an unrecognized response must not be 
cached.

Note:

There may be elements in the HTTP infrastructure configured to modify HTTP 
response entity bodies for 4xx and 5xx status code responses. For example, some 
HTTP origin servers have such a feature as a configuration option. This behavior 
may interfere with the use of 4xx and 5xx status code responses carrying SOAP fault 
messages in HTTP and it is recommended that such behavior is disabled for 
resources accepting SOAP/HTTP requests. If the rewriting behavior cannot be 

3xx Redirection The requested resource has moved and the HTTP request 
SHOULD be retried using the URI carried in the associated 
Location header field as the new value for the 
http://www.w3.org/2003/05/soap/mep/ImmediateDestination

property.

"Init"

4xx Client Error   
400 Bad Request Indicates a problem with the received HTTP request 

message.
"Send
"Rece

401 Unauthorized Indicates that the HTTP request requires authorization.

If the simple authentication feature is unavailable or the 
operation of simple authentication ultimately fails, then the 
message exchange is regarded as having completed 
unsuccessfully.

"Requ

405 Method not 
allowed

Indicates that the peer HTTP server does not support the 
requested HTTP method at the given request URI. The 
message exchange is regarded as having completed 
unsuccessfully.

"Fail"

415 Unsupported 
Media Type

Indicates that the peer HTTP server does not support the 
Content-type used to encode the request message. The 
message exchange is regarded as having completed 
unsuccessfully.

"Fail"

5xx Server Error   
500 Internal 

Server Error
Indicates a server problem or a problem with the received 
request

"Send
"Rece



From www.w3c.org  43 7/10/2003

disabled, SOAP/HTTP cannot be used in such configurations.

7.5.1.3 Sending+Receiving

In the "Sending+Receiving" state (6.2 SOAP Request-Response Message Exchange
Pattern only), the transmission of the request message and receiving of the response 
message is completed. The response message is assumed to contain a SOAP envelope 
serialized according to the rules for carrying SOAP messages in the media type given in 
the Content-Type header field.

The response MAY be of content type other than "application/soap+xml". Such usage is 
considered non-normative, and accordingly is not modeled in the state machine. 
Interpretation of such responses is at the discretion of the receiver.

7.5.1.4 Receiving

In the "Receiving" state (6.3 SOAP Response Message Exchange Pattern only), 
receiving of the response message is completed. The response message is assumed to 
contain a SOAP envelope serialized according to the rules for carrying SOAP messages 
in the media type given in the Content-Type header field.

The response MAY be of content type other than "application/soap+xml". Such a result is 
particularly likely when a SOAP request sent with a 
http://www.w3.org/2003/05/soap/features/web-method/Method of "GET" is directed 
(intentionally or otherwise) to a non-SOAP HTTP server. Such usage is considered non-
normative, and accordingly is not modeled in the state machine. Interpretation of such 
responses is at the discretion of the receiver.

7.5.1.5 Success and Fail

"Success" and "Fail" are the terminal states of the Request-Response and SOAP-
Response MEPs. Control over the message exchange context returns to the local SOAP 
node.

7.5.2 Behavior of Responding SOAP Node

The overall flow of the behavior of a responding SOAP node follows a state machine 
description consistent with either 6.2 SOAP Request-Response Message Exchange
Pattern or 6.3 SOAP Response Message Exchange Pattern (differences are indicated 
as necessary). The following subsections describe each state in detail.

7.5.2.1 Init

In the "Init" state, the binding waits for the start of an inbound request message. Table 18 
describes the errors that a responding SOAP node might generate while in the "Init" 
state. In this state no SOAP message has been received, therefore the SOAP node 
cannot generate a SOAP fault.



From www.w3c.org  44 7/10/2003

7.5.2.2 Receiving

In the "Receiving" state, the binding receives the request and any associated message 
and waits for the start of a response message to be available. Table 19 describes the 
HTTP response header fields generated by the responding SOAP node. Table 20 
describes the HTTP status codes associated with SOAP faults that can be generated by 
the responding SOAP node.

 

Table 18: Errors generated in the Init state

Problem with Message HTTP Status 
Code

HTTP Reason Phrase 
(informative)

Malformed Request Message 400 Bad request
HTTP Method is neither POST nor 
GET

405 Method Not Allowed

Unsupported message encapsulation 
method

415 Unsupported Media

Table 19: HTTP Response Headers Fields

Field Value
Status line 200, or set according to Table 20 if a SOAP fault was generated.
Content-
Type header 
field

The media type of the response body, see 7.1 Introduction for a 
description of permissible media types.

Additional 
header fields

Generated in accordance with the rules for the binding specific expression 
of any optional features in use for this message exchange. For example, 
a Content-Encoding header field (see HTTP [RFC 2616], section 14.11) 
may be used to express an optional compression feature.

HTTP Entity 
Body

SOAP message serialized according to the rules for carrying SOAP 
messages in the media type given by the Content-Type header field. 
Rules for carrying SOAP messages in "application/soap+xml" are given in 
A. The application/soap+xml Media Type.

Table 20: SOAP Fault to HTTP Status Mapping

SOAP Fault HTTP Status Code HTTP Reason Phrase (informative)
env:VersionMismatch 500 Internal server error
env:MustUnderstand 500 Internal server error
env:Sender 400 Bad request
env:Receiver 500 Internal server error



From www.w3c.org  45 7/10/2003

7.5.2.3 Receiving+Sending

In the "Receiving+Sending" state (6.2 SOAP Request-Response Message Exchange
Pattern only) the binding completes receiving of the request message and transmission 
of the response message.

7.5.2.4 Sending

In the "Sending" state (6.3 SOAP Response Message Exchange Pattern only) the 
binding completes transmission of the response message.

7.5.2.5 Success and Fail

"Success" and "Fail" are the terminal states for the Request-Response and SOAP-
Response MEPs. From the point-of-view of the local node this message exchange has 
completed.

7.6 Security Considerations

The SOAP HTTP Binding (see 7. SOAP HTTP Binding) can be considered as an 
extension of the HTTP application protocol. As such, all of the security considerations 
identified and described in section 15 of the HTTP specification [RFC 2616] apply to the 
SOAP HTTP Binding in addition to those described in SOAP 1.2 Part 1 [SOAP Part 1] 
Security Considerations. Implementors of the SOAP HTTP Binding should carefully 
review this material.

8. References

8.1 Normative References

[SOAP Part 1] 
W3C Proposed Recommendation "SOAP Version 1.2 Part 1: Messaging 
Framework", Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques 
Moreau, Henrik Frystyk Nielsen, 24 June 2003 (See 
http://www.w3.org/TR/2003/REC-soap12-part1-20030624.) 

[RFC 2616] 
IETF "RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J. Gettys, 
J. C. Mogul, H. Frystyk, T. Berners-Lee, January 1997. (See 
http://www.ietf.org/rfc/rfc2616.txt.) 

[RFC 2119] 
IETF "RFC 2119: Key words for use in RFCs to Indicate Requirement Levels", S. 
Bradner, March 1997. (See http://www.ietf.org/rfc/rfc2119.txt.) 

[XML Schema Part 1] 
W3C Recommendation "XML Schema Part 1: Structures", Henry S. Thompson, 

env:DataEncodingUnknown 500 Internal server error



From www.w3c.org  46 7/10/2003

David Beech, Murray Maloney, Noah Mendelsohn, 2 May 2001. (See 
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.) 

[XML Schema Part 2] 
W3C Recommendation "XML Schema Part 2: Datatypes", Paul V. Biron, Ashok 
Malhotra, 2 May 2001. (See http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/.) 

[RFC 2396] 
IETF "RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-
Lee, R. Fielding, L. Masinter, August 1998. (See http://www.ietf.org/rfc/rfc2396.txt.) 

[Namespaces in XML] 
W3C Recommendation "Namespaces in XML", Tim Bray, Dave Hollander, Andrew 
Layman, 14 January 1999. (See http://www.w3.org/TR/1999/REC-xml-names-
19990114/.) 

[XML 1.0] 
W3C Recommendation "Extensible Markup Language (XML) 1.0 (Second Edition)", 
Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, 6 October 2000. (See 
http://www.w3.org/TR/2000/REC-xml-20001006.) 

[XML InfoSet] 
W3C Recommendation "XML Information Set", John Cowan, Richard Tobin, 24 
October 2001. (See http://www.w3.org/TR/2001/REC-xml-infoset-20011024/.) 

[RFC 3023] 
IETF "RFC 3023: XML Media Types", M. Murata, S. St. Laurent, D. Kohn, July 
1998. (See http://www.ietf.org/rfc/rfc3023.txt.) 

8.2 Informative References

[SOAP Part 0] 
W3C Proposed Recommendation "SOAP Version 1.2 Part 0: Primer", Nilo Mitra, 24 
June 2003 (See http://www.w3.org/TR/2003/REC-soap12-part0-20030624.) 

[SOAP MediaType] 
IETF Internet Draft "The 'application/soap+xml' media type", M. Baker, M. 
Nottingham, "draft-baker-soap-media-reg-03.txt" May 29, 2003. Note that this 
Internet Draft expires in November 2003. (See http://www.ietf.org/internet-
drafts/draft-baker-soap-media-reg-03.txt.) 

[XMLP Comments] 
XML Protocol Comments Archive (See http://lists.w3.org/Archives/Public/xmlp-
comments/.) 

[XMLP Dist-App] 
XML Protocol Discussion Archive (See http://lists.w3.org/Archives/Public/xml-dist-
app/.) 

[XMLP Charter] 
XML Protocol Charter (See http://www.w3.org/2000/09/XML-Protocol-Charter.) 

[RFC 2045] 
IETF "RFC2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of 
Internet Message Bodies", N. Freed, N. Borenstein, November 1996. (See 
http://www.ietf.org/rfc/rfc2045.txt.) 

[RFC 2026] 



From www.w3c.org  47 7/10/2003

IETF "RFC 2026: The Internet Standards Process -- Revision 3", section 4.2.3, S. 
Bradner, October 1996. (See http://www.ietf.org/rfc/rfc2026.txt.) 

[RFC 2817] 
IETF "RFC 2817: Upgrading to TLS Within HTTP/1.1", R. Khare, S. Lawrence, May 
2000. (See http://www.ietf.org/rfc/rfc2817.txt.) 

[CharMod] 
W3C Working Draft "Character Model for the World Wide Web 1.0", Martin J. Durst, 
Francois Yergeau, Richard Ishida, Misha Wolf, Asmus Freytag, Tex Texin, 30 April 
2002. (See http://www.w3.org/TR/charmod/.) 

A. The "application/soap+xml" Media Type
This appendix defines the "application/soap+xml" media type which can be used to 
describe SOAP 1.2 messages serialized as XML.

Note:

At the time of this document's publication, the process for registering this media type 
with IANA was underway using the [SOAP MediaType] Internet Draft. A future 
version of the SOAP specification may reference the media type in the IANA registry. 

A.1 Registration

MIME media type name: 

application

MIME subtype name: 

soap+xml

Required parameters: 

none

Optional parameters: 
charset 

This parameter has identical semantics to the charset parameter of the 
"application/xml" media type as specified in RFC 3023 [RFC 3023].

action 

See section A.3 The action Parameter.

Encoding considerations: 



From www.w3c.org  48 7/10/2003

Identical to those of "application/xml" as described in RFC 3023 [RFC 3023], 
section 3.2, as applied to the SOAP envelope infoset.

Security considerations: 

See section A.2 Security Considerations.

Interoperability considerations: 

There are no known interoperability issues.

Published specification: 

This document (SOAP 1.2 Part 2) and SOAP 1.2 Part 1 [SOAP Part 1].

Applications which use this media type: 

No known applications currently use this media type.

Additional information: 
File extension: 

SOAP messages are not required or expected to be stored as files.

Fragment identifiers: 

Identical to that of "application/xml" as described in RFC 3023 [RFC 3023], 
section 5.

Base URI: 

As specified in RFC 3023 [RFC 3023], section 6. Also see SOAP 1.2 Part 1 
[SOAP Part 1], section Use of URIs in SOAP.

Macintosh File Type code: 

TEXT

Person and email address to contact for further information: 

Mark Baker <mbaker@idokorro.com>

Intended usage: 

COMMON



From www.w3c.org  49 7/10/2003

Author/Change controller: 

The SOAP 1.2 specification set is a work product of the World Wide Web 
Consortium's XML Protocol Working Group. The W3C has change control over 
these specifications.

A.2 Security Considerations

Because SOAP can carry application defined data whose semantics is independent from 
that of any MIME wrapper (or context within which the MIME wrapper is used), one 
should not expect to be able to understand the semantics of the SOAP message based 
on the semantics of the MIME wrapper alone. Therefore, whenever using the 
"application/soap+xml" media type, it is strongly RECOMMENDED that the security 
implications of the context within which the SOAP message is used is fully understood. 
The security implications are likely to involve both the specific SOAP binding to an 
underlying protocol as well as the application-defined semantics of the data carried in the 
SOAP message (though one must be careful when doing this, as discussed in SOAP 1.2 
Part 1 [SOAP Part 1], section Binding to Application-Specific Protocols.

Also, see SOAP 1.2 Part 1 [SOAP Part 1], the entire section Security Considerations.

In addition, as this media type uses the "+xml" convention, it shares the same security 
considerations as described in RFC 3023 [RFC 3023], section 10.

A.3 The action Parameter

This optional parameter can be used to specify the URI that identifies the intent of the 
message. In SOAP 1.2, it serves a similar purpose as the SOAPAction HTTP header field 
did in SOAP 1.1. Namely, its value identifies the intent of the message.

The value of the action parameter is an absolute URI-reference as defined by RFC 2396 
[RFC 2396]. SOAP places no restrictions on the specificity of the URI or that it is 
resolvable.

Although the purpose of the action parameter is to indicate the intent of the SOAP 
message there is no mechanism for automatically computing the value based on the 
SOAP envelope. In other words, the value has to be determined out of band.

It is recommended that the same value be used to identify sets of message types that are 
logically connected in some manner, for example part of the same "service". It is strongly 
RECOMMENDED that the URI be globally unique and stable over time.

The presence and content of the action parameter MAY be used by servers such as 
firewalls to appropriately filter SOAP messages and it may be used by servers to facilitate 
dispatching of SOAP messages to internal message handlers etc. It SHOULD NOT be 
used as an insecure form of access authorization.



From www.w3c.org  50 7/10/2003

Use of the action parameter is OPTIONAL. SOAP Receivers MAY use it as a hint to 
optimize processing, but SHOULD NOT require its presence in order to operate.

B. Mapping Application Defined Names to XML Names
This appendix details an algorithm for taking an application defined name, such as the 
name of a variable or field in a programming language, and mapping it to the Unicode 
characters that are legal in the names of XML elements and attributes as defined in 
Namespace in XML [Namespaces in XML]

Hex Digits

B.1 Rules for Mapping Application Defined Names to XML Names

1. An XML Name has two parts: Prefix and LocalPart. Let Prefix be determined per 
the rules and constraints specified in Namespaces in XML [Namespaces in XML].

2. Let T be a name in an application, represented as a sequence of characters 
encoded in a particular character encoding. 

3. Let M be the implementation-defined function for transcoding of the characters used 
in the application defined name to an equivalent string of Unicode characters. 

Note:

Ideally, if this transcoding is from a non-Unicode encoding, it should be both 
reversible and Unicode Form C normalizing (that is, combining sequences will 
be in the prescribed canonical order). It should be noted that some 
transcodings cannot be perfectly reversible and that Normalization Form C 
(NFC) normalization may alter the original sequence in a few cases (see 
Character Model for the World Wide Web [CharMod]). To ensure that matching 
names continue to match after mapping, Unicode sequences should be 
normalized using Unicode Normalization Form C. 

Note:

This transcoding is explicitly to Unicode scalar values ("code points") and not to 
any particular character encoding scheme of Unicode, such as UTF-8 or UTF-
16. 

Note:

Note: Properly formed surrogate pair sequences must be converted to their 

[5]   hexDigit    ::=   [0-9A-F]



From www.w3c.org  51 7/10/2003

respective scalar values ("code points") [That is, the sequence U+D800 
U+DC00 should be transcoded to the character U+10000]. If the transcoding 
begins with a Unicode encoding, non-conforming (non-shortest form) UTF-8 
and UTF-16 sequences must be converted to their respective scalar values. 

Note:

The number of characters in T is not necessarily the same as the number of 
characters in M, because transcoding may be one-to-many or many-to-one. The 
details of transcoding may be implementation-defined. There may be (very 
rarely) cases where there is no equivalent Unicode representation for T; such 
cases are not covered here. 

4. Let C be the sequence of Unicode scalar values (characters) represented by M(T)

5. Let N be the number of characters in C. Let C1, C2, ..., CN be the characters of C, 
in order from most to least significant (logical order).

6. For each i between 1 (one) and N, let Xi be the Unicode character string defined by 
the following rules: 

Case:

1. If Ci is undefined (that is, some character or sequence of characters as 
defined in the application's character sequence T contains no mapping to 
Unicode), then Xi is implementation-defined.

2. If i<=N-1 and Ci is "_" (U+005F LOW LINE) and Ci+1 is "x" (U+0078 LATIN 
SMALL LETTER X), then let Xi be "_x005F_". 

3. If i=1, and N>=3, and C1 is "x" (U+0078 LATIN SMALL LETTER X) or 
"X" (U+0058 LATIN CAPITAL LETTER X), and C2 is "m" (U+006D LATIN 
SMALL LETTER M) or "M" (U+004D LATIN CAPITAL LETTER M), and C3 is 
"l" (U+006C LATIN SMALL LETTER L) or "L" (U+004C LATIN CAPITAL 
LETTER L) (in other words, a string three letters or longer starting with the 
text "xml" or any re-capitalization thereof), then if C1 is "x" (U+0078 LATIN 
SMALL LETTER X) then let X1 be "_x0078_"; otherwise, if C1 is "X" (U+0058 
LATIN CAPITAL LETTER X) then let X1 be "_x0058_". 

4. If Ci is not a valid XML NCName character (see Namespaces in XML 
[Namespaces in XML]) or if i=1 (one) and C1 is not a valid first character of an 
XML NCName then:



From www.w3c.org  52 7/10/2003

Let U1, U2, ... , U6 be the six hex digits [PROD: 5] such that Ci is "U+" U1 
U2 ... U6 in the Unicode scalar value.

Case:

1. If U1=0, U2=0, U3=0, and U4=0, then let Xi="_x" U5 U6 "_".

This case implies that Ci is a character in the Basic Multilingual Plane 
(Plane 0) of Unicode and can be wholly represented by a single UTF-16 
code point sequence U+U5U6.

2. Otherwise, let Xi be "_x" U1 U2 U3 U4 U5 U6 "_".

5. Otherwise, let Xi be Mi. That is, any character in X that is a valid character in 
an XML NCName is simply copied.

7. Let LocalPart be the character string concatenation of X1, X2, ... , XN in order from 
most to least significant.

8. Let XML Name be the QName per Namespaces in XML [Namespaces in XML]

B.2 Examples

Hello world -> Hello_x0020_world
Hello_xorld -> Hello_x005F_xorld
Helloworld_ -> Helloworld_

          x -> x
        xml -> _x0078_ml
       -xml -> _x002D_xml
       x-ml -> x-ml

     Ælfred -> Ælfred
   άγνωστος -> άγνωστος
����        -> _x1709__x1705__x170E__x1708_
���         -> _x13D9__x13DA__x13A5_
      

C. Using W3C XML Schema with SOAP Encoding (Non-
Normative)

As noted in 3.1.4 Computing the Type Name Property SOAP graph nodes are labeled 
with type names, but conforming processors are not required to perform validation of 
encoded SOAP messages.



From www.w3c.org  53 7/10/2003

These sections describe techniques that can be used when validation with W3C XML 
schemas is desired for use by SOAP applications. Any errors or faults resulting from such 
validation are beyond those covered by the normative recommendation; from the 
perspective of SOAP, such faults are considered to be application-level failures. 

C.1 Validating Using the Minimum Schema

Although W3C XML schemas are conventionally exchanged in the form of schema 
documents (see XML Schema [XML Schema Part 1]), the schema recommendation is 
build on an abstract definition of schemas, to which all processors need to conform. The 
schema recommendation provides that all such schemas include definitions for a core set 
of built in types, such as integers, dates, and so on (see XML Schema [XML Schema
Part 1], Built-in Simple Type Definition). Thus, it is possible to discuss validation of a 
SOAP message against such a minimal schema, which is the one that would result from 
providing no additional definitions or declarations (i.e. no schema document) to a schema 
processor. 

The minimal schema provides that any well formed XML document will validate, except 
that where an xsi:type is provided, the type named must be built in, and the 
corresponding element must be valid per that type. Thus, validation of a SOAP 1.2 
message using a minimal schema approximates the behavior of the built-in types of 
SOAP 1.1. 

C.2 Validating Using the SOAP Encoding Schema

Validation against the minimal schema (see C.1 Validating Using the Minimum
Schema) will not succeed where encoded graph nodes have multiple inbound edges. 
This is because elements representing such graph nodes will carry id attribute 
information items which are not legal on elements of type "xs:string", "xs:integer" etc. The 
SOAP Encoding of such graphs MAY be validated against the SOAP Encoding schema. 
In order for the encoding to validate, edge labels, and hence the [local name] and 
[namespace name] properties of the element information items, need to match those 
defined in the SOAP Encoding schema. Validation of the encoded graph against the 
SOAP Encoding schema would result in the type name property of the nodes in the graph 
being assigned the relevant type name. 

C.3 Validating Using More Specific Schemas

It may be that schemas could be constructed to describe the encoding of certain graphs. 
Validation of the encoded graph against such a schema would result in the type name 
property of the graph nodes being assigned the relevant type name. Such a schema can 
also supply default or fixed values for one or more of the itemType , arraySize or 
nodeType attribute information items; the values of such defaulted attributes affect the 
deserialized graph in the same manner as if the attributes had been explicitly supplied in 
the message. Errors or inconsistencies thus introduced (e.g. if the value of the attribute is 
erroneous or inappropriate) should be reported as application-level errors; faults from the 



From www.w3c.org  54 7/10/2003

"http://www.w3.org/2003/05/soap-encoding" namespace should be reported only if the 
normative parts of this specification are violated. 

D. Acknowledgements (Non-Normative)
This document is the work of the W3C XML Protocol Working Group.

Participants in the Working Group are (at the time of writing, and by alphabetical order): 
Carine Bournez (W3C), Michael Champion (Software AG), Glen Daniels (Macromedia, 
formerly of Allaire), David Fallside (IBM), Dietmar Gaertner (Software AG), Tony Graham 
(Sun Microsystems), Martin Gudgin (Microsoft Corporation, formerly of DevelopMentor), 
Marc Hadley (Sun Microsystems), Gerd Hoelzing (SAP AG), Oisin Hurley (IONA 
Technologies), John Ibbotson (IBM), Ryuji Inoue (Matsushita Electric), Kazunori Iwasa 
(Fujitsu Limited), Mario Jeckle (DaimlerChrysler R. & Tech), Mark Jones (AT&T), Anish 
Karmarkar (Oracle), Jacek Kopecky (Systinet/Idoox), Yves Lafon (W3C), Michah Lerner 
(AT&T), Noah Mendelsohn (IBM, formerly of Lotus Development), Jeff Mischkinsky 
(Oracle), Nilo Mitra (Ericsson), Jean-Jacques Moreau (Canon), Masahiko Narita (Fujitsu 
Limited), Eric Newcomer (IONA Technologies), Mark Nottingham (BEA Systems, formerly 
of Akamai Technologies), David Orchard (BEA Systems, formerly of Jamcracker), 
Andreas Riegg (DaimlerChrysler R. & Tech), Hervé Ruellan (Canon), Jeff Schlimmer 
(Microsoft Corporation), Miroslav Simek (Systinet/Idoox), Pete Wenzel (SeeBeyond), 
Volker Wiechers (SAP AG). 

Previous participants were: Yasser alSafadi (Philips Research), Bill Anderson (Xerox), 
Vidur Apparao (Netscape), Camilo Arbelaez (WebMethods), Mark Baker (Idokorro Mobile 
(Planetfred), formerly of Sun Microsystems), Philippe Bedu (EDF (Electricité de France)), 
Olivier Boudeville (EDF (Electricité de France)), Don Box (Microsoft Corporation, formerly 
of DevelopMentor), Tom Breuel (Xerox), Dick Brooks (Group 8760), Winston Bumpus 
(Novell), David Burdett (Commerce One), Charles Campbell (Informix Software), Alex 
Ceponkus (Bowstreet), David Chappell (Sonic Software), Miles Chaston (Epicentric), 
David Clay (Oracle), David Cleary (Progress Software), Conleth O'Connell (Vignette), 
Ugo Corda (Xerox), Paul Cotton (Microsoft Corporation), Fransisco Cubera (IBM), Jim 
d'Augustine (eXcelon), Ron Daniel (Interwoven), Dug Davis (IBM), Ray Denenberg 
(Library of Congress), Paul Denning (MITRE), Frank DeRose (Tibco), Mike Dierken 
(DataChannel), Andrew Eisenberg (Progress Software), Brian Eisenberg (DataChannel), 
Colleen Evans (Sonic Software), John Evdemon (XMLSolutions), David Ezell (Hewlett-
Packard), Eric Fedok (Active Data Exchange), Chris Ferris (Sun Microsystems), Daniela 
Florescu (Propel), Dan Frantz (BEA Systems), Michael Freeman (Engenia Software), 
Scott Golubock (Epicentric), Rich Greenfield (Library of Congress), Hugo Haas (W3C), 
Mark Hale (Interwoven), Randy Hall (Intel), Bjoern Heckel (Epicentric), Erin Hoffman 
(Tradia), Steve Hole (MessagingDirect Ltd.), Mary Holstege (Calico Commerce), Jim 
Hughes (Fujitsu Software Corporation), Yin-Leng Husband (Hewlett-Packard, formerly of 
Compaq), Scott Isaacson (Novell), Murali Janakiraman (Rogue Wave), Eric Jenkins 
(Engenia Software), Jay Kasi (Commerce One), Jeffrey Kay (Engenia Software), Richard 
Koo (Vitria Technology Inc.), Alan Kropp (Epicentric), Julian Kumar (Epicentric), Peter 
Lecuyer (Progress Software), Tony Lee (Vitria Technology Inc.), Amy Lewis (TIBCO), 
Bob Lojek (Intalio), Henry Lowe (OMG), Brad Lund (Intel), Matthew MacKenzie 



From www.w3c.org  55 7/10/2003

(XMLGlobal Technologies), Murray Maloney (Commerce One), Richard Martin (Active 
Data Exchange), Highland Mary Mountain (Intel), Alex Milowski (Lexica), Kevin Mitchell 
(XMLSolutions), Ed Mooney (Sun Microsystems), Dean Moses (Epicentric), Don Mullen 
(Tibco), Rekha Nagarajan (Calico Commerce), Raj Nair (Cisco), Mark Needleman (Data 
Research Associates), Art Nevarez (Novell), Henrik Nielsen (Microsoft Corporation), 
Kevin Perkins (Compaq), Jags Ramnaryan (BEA Systems), Vilhelm Rosenqvist (NCR), 
Marwan Sabbouh (MITRE), Waqar Sadiq (Vitria Technology Inc.), Rich Salz (Zolera), 
Krishna Sankar (Cisco), George Scott (Tradia), Shane Sesta (Active Data Exchange), 
Lew Shannon (NCR), John-Paul Sicotte (MessagingDirect Ltd.), Simeon Simeonov 
(Allaire), Simeon Simeonov (Macromedia), Aaron Skonnard (DevelopMentor), Nick 
Smilonich (Unisys), Soumitro Tagore (Informix Software), James Tauber (Bowstreet), 
Lynne Thompson (Unisys), Patrick Thompson (Rogue Wave), Jim Trezzo (Oracle), Asir 
Vedamuthu (WebMethods), Randy Waldrop (WebMethods), Fred Waskiewicz (OMG), 
David Webber (XMLGlobal Technologies), Ray Whitmer (Netscape), Stuart Williams 
(Hewlett-Packard), Yan Xu (DataChannel), Amr Yassin (Philips Research), Susan Yee 
(Active Data Exchange), Jin Yu (Martsoft). 

The people who have contributed to discussions on xml-dist-app@w3.org are also 
gratefully acknowledged.


	SOAP Version 1.2 Part 2: Adjuncts
	24 Jun 2003 W3C Recommendation World Wide Web Consortium
	Abstract
	Status of this Document
	Short Table of Contents
	Table of Contents
	Appendices

	1. Introduction
	1.1 Notational Conventions

	2. SOAP Data Model
	2.1 Graph Edges
	2.1.1 Edge labels

	2.2 Graph Nodes
	2.2.1 Single and Multi Reference Nodes

	2.3 Values

	3. SOAP Encoding
	3.1 Mapping between XML and the SOAP Data Model
	3.1.1 Encoding Graph Edges and Nodes
	3.1.2 Encoding Simple Values
	3.1.3 Encoding Compound Values
	3.1.4 Computing the Type Name Property
	3.1.5 Unique identifiers
	3.1.6 arraySize Attribute Information Item
	3.1.7 nodeType Attribute Information Item

	3.2 Decoding Faults

	4. SOAP RPC Representation
	4.1 Use of RPC on the World Wide Web
	4.1.1 Identification of RPC Resources
	4.1.2 Distinguishing Resource Retrievals from other RPCs

	4.2 RPC and SOAP Body
	4.2.1 RPC Invocation
	4.2.2 RPC Response
	4.2.3 SOAP Encoding Restriction

	4.3 RPC and SOAP Header
	4.4 RPC Faults

	5. A Convention for Describing Features and Bindings
	5.1 Model and Properties
	5.1.1 Properties
	5.1.2 Property Scope
	5.1.3 Properties and Features


	6. SOAP-Supplied Message Exchange Patterns and Features
	6.1 Property Conventions for SOAP Message Exchange Patterns
	6.2 SOAP Request-Response Message Exchange Pattern
	6.2.1 SOAP Feature Name
	6.2.2 Description
	6.2.3 State Machine Description
	6.2.4 Fault Handling

	6.3 SOAP Response Message Exchange Pattern
	6.3.1 SOAP Feature Name
	6.3.2 Description
	6.3.3 State Machine Description
	6.3.4 Fault Handling

	6.4 SOAP Web Method Feature
	6.4.1 SOAP Feature Name
	6.4.2 Description
	6.4.3 SOAP Web Method Feature State Machine

	6.5 SOAP Action Feature
	6.5.1 SOAP Feature Name
	6.5.2 Description
	6.5.3 SOAP Action Feature State Machine


	7. SOAP HTTP Binding
	7.1 Introduction
	7.1.1 Optionality
	7.1.2 Use of HTTP
	7.1.3 Interoperability with non-SOAP HTTP Implementations
	7.1.4 HTTP Media-Type

	7.2 Binding Name
	7.3 Supported Message Exchange Patterns
	7.4 Supported Features
	7.5 MEP Operation
	7.5.1 Behavior of Requesting SOAP Node
	7.5.2 Behavior of Responding SOAP Node

	7.6 Security Considerations

	8. References
	8.1 Normative References
	[SOAP Part 1]
	[RFC 2616]
	[RFC 2119]
	[XML Schema Part 1]
	[XML Schema Part 2]
	[RFC 2396]
	[Namespaces in XML]
	[XML 1.0]
	[XML InfoSet]
	[RFC 3023]

	8.2 Informative References
	[SOAP Part 0]
	[SOAP MediaType]
	[XMLP Comments]
	[XMLP Dist-App]
	[XMLP Charter]
	[RFC 2045]
	[RFC 2026]
	[RFC 2817]
	[CharMod]


	A. The "application/soap+xml" Media Type
	A.1 Registration
	MIME media type name:
	MIME subtype name:
	Required parameters:
	Optional parameters:
	Encoding considerations:
	Security considerations:
	Interoperability considerations:
	Published specification:
	Applications which use this media type:
	Additional information:
	Person and email address to contact for further information:
	Intended usage:
	Author/Change controller:

	A.2 Security Considerations
	A.3 The Parameter

	B. Mapping Application Defined Names to XML Names
	B.1 Rules for Mapping Application Defined Names to XML Names
	B.2 Examples

	C. Using W3C XML Schema with SOAP Encoding (Non-Normative)
	C.1 Validating Using the Minimum Schema
	C.2 Validating Using the SOAP Encoding Schema
	C.3 Validating Using More Specific Schemas

	D. Acknowledgements (Non-Normative)

	 
	W3C Title Page

