WC

XML Schema Part 0: Primer
W3C Recommendation, 2 May 2001

This version:
http://www.w3.0rg/TR/2001/REC-xmlschema-0-20010502/
Latest version:
http://www.w3.org/TR/xmlschema-0/
Previous version:
http://www.w3.0rg/TR/2001/PR-xmischema-0-20010330/
Editor:
David C. Fallside (IBM) fallside@us.ibm.com

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

XML Schema Part O: Primer is a non-normative document intended to provide an
easily readable description of the XML Schema facilities, and is oriented towards
quickly understanding how to create schemas using the XML Schema language.
XML Schema Part 1: Structures and XML Schema Part 2: Datatypes provide the
complete normative description of the XML Schema language. This primer
describes the language features through numerous examples which are
complemented by extensive references to the normative texts.

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this
document series is maintained at the W3C.

This document has been reviewed by W3C Members and other interested parties
and has been endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited as a normative
reference from another document. W3C'’s role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as
part of the W3C XML Activity. The goals of the XML Schema language are

discussed in the XML Schema Requirements document. The authors of this
document are the members of the XML Schema Working Group. Different parts of
the document have different editors.

This version of this document incorporates some editorial changes from earlier
versions.

Please report errors in this document to www-xml-schema-comments@w3.0rg
(archive). The list of known errors in this specification is available at
http://www.w3.0rg/2001/05/xmlschema-errata.

The English version of this specification is the only normative version. Information
about translations of this document is available at
http://www.w3.0rg/2001/05/xmlschema-translations.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.0rg/TR.

Table of contents

1 Introduction

2 Basic Concepts: The Purchase Order

2.1 The Purchase Order Schema

2.2 Complex Type Definitions, Element & Attribute Declarations
2.2.1 Occurrence Constraints
2.2.2 Global Elements & Attributes
2.2.3 Naming Conflicts

2.3 Simple Types

2.3.1 List Types

2.3.2 Union Types
2.4 Anonymous Type Definitions

2.5 Element Content
2.5.1 Complex Types from Simple Types
2.5.2 Mixed Content
2.5.3 Empty Content
2.5.4 anyType
2.6 Annotations
2.7 Building Content Models
2.8 Attribute Groups
2.9 Nil Values
3 Advanced Concepts I: Namespaces, Schemas & Qualification
3.1 Target Namespaces & Unqualified Locals
3.2 Qualified Locals
3.3 Global vs. Local Declarations
3.4 Undeclared Target Namespaces
4 Advanced Concepts II: The International Purchase Order
4.1 A Schema in Multiple Documents
4.2 Deriving Types by Extension
4.3 Using Derived Types in Instance Documents
4.4 Deriving Complex Types by Restriction
4.5 Redefining Types & Groups
4.6 Substitution Groups

4.7 Abstract Elements & Types
4.8 Controlling the Creation & Use of Derived Types
5 Advanced Concepts Ill: The Quarterly Report
5.1 Specifying Uniqueness
5.2 Defining Keys & their References
5.3 XML Schema Constraints vs. XML 1.0 ID Attributes
5.4 Importing Types
5.4.1 Type Libraries
5.5 Any Element, Any Attribute
5.6 schemal.ocation
5.7 Conformance

Appendices

A Acknowledgements

B Simple Types & Their Facets
C Using Entities

D Regular Expressions

E Index

1 Introduction

This document, XML Schema Part O: Primer, provides an easily approachable
description of the XML Schema definition language, and should be used alongside
the formal descriptions of the language contained in Parts 1 and 2 of the XML
Schema specification. The intended audience of this document includes
application developers whose programs read and write schema documents, and
schema authors who need to know about the features of the language, especially
features that provide functionality above and beyond what is provided by DTDs.
The text assumes that you have a basic understanding of XML 1.0 and XML-
Namespaces. Each major section of the primer introduces new features of the
language, and describes those features in the context of concrete examples.

Section 2 covers the basic mechanisms of XML Schema. It describes how to
declare the elements and attributes that appear in XML documents, the
distinctions between simple and complex types, defining complex types, the use of
simple types for element and attribute values, schema annotation, a simple
mechanism for re-using element and attribute definitions, and nil values.

Section 3, the first advanced section in the primer, explains the basics of how
namespaces are used in XML and schema documents. This section is important
for understanding many of the topics that appear in the other advanced sections.

Section 4, the second advanced section in the primer, describes mechanisms for
deriving types from existing types, and for controlling these derivations. The
section also describes mechanisms for merging together fragments of a schema
from multiple sources, and for element substitution.

Section 5 covers more advanced features, including a mechanism for specifying
uniqueness among attributes and elements, a mechanism for using types across
namespaces, a mechanism for extending types based on nhamespaces, and a
description of how documents are checked for conformance.

3

In addition to the sections just described, the primer contains a number of
appendices that provide detailed reference information on simple types and a
regular expression language.

The primer is a non-normative document, which means that it does not provide a
definitive (from the W3C'’s point of view) specification of the XML Schema
language. The examples and other explanatory material in this document are
provided to help you understand XML Schema, but they may not always provide
definitive answers. In such cases, you will need to refer to the XML Schema
specification, and to help you do this, we provide many links pointing to the
relevant parts of the specification. More specifically, XML Schema items
mentioned in the primer text are linked to an index of element names and
attributes, and a summary table of datatypes, both in the primer. The table and the
index contain links to the relevant sections of XML Schema parts 1 and 2.

2 Basic Concepts: The Purchase Order

The purpose of a schema is to define a class of XML documents, and so the term
"instance document" is often used to describe an XML document that conforms to
a particular schema. In fact, neither instances nor schemas need to exist as
documents per se -- they may exist as streams of bytes sent between
applications, as fields in a database record, or as collections of XML Infoset
"Information Items" -- but to simplify the primer, we have chosen to always refer to
instances and schemas as if they are documents and files.

Let us start by considering an instance document in a file called po. xm . It
describes a purchase order generated by a home products ordering and billing
application:

The Purchase Order, po.xml

<?xm version="1.0"?>
<pur chaseOrder orderDate="1999-10-20">
<shi pTo country="US">
<nane>Al i ce Snith</nane>
<street>123 Maple Street</street>
<city>M Il Valley</city>
<st at e>CA</ st at e>
<zi p>90952</ zi p>
</ shi pTo>
<bill To country="US">
<nane>Robert Smi t h</ name>
<street>8 Oak Avenue</street>
<city>a d Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>
</bill To>
<conment>Hurry, ny lawn is going wld!</coment>
<items>
<i tem part Nun¥"872- AA" >
<pr oduct Name>Lawnnower </ pr oduct Nanme>
<quantity>1</quantity>
<USPri ce>148. 95</ USPri ce>
<comment >Confirmthis is electric</coment>
</itenp
<i tem part Nun¥"926- AA" >
<pr oduct Nane>Baby Mbni t or </ pr oduct Name>

<quantity>l</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>
</[itemp
</items>
</ pur chaseOr der >

The purchase order consists of a main element, pur chaseOr der, and the
subelements shi pTo, bi I | To, corment , and i t ens. These subelements
(except conment) in turn contain other subelements, and so on, until a
subelement such as USPr i ce contains a number rather than any subelements.
Elements that contain subelements or carry attributes are said to have complex
types, whereas elements that contain numbers (and strings, and dates, etc.) but
do not contain any subelements are said to have simple types. Some elements
have attributes; attributes always have simple types.

The complex types in the instance document, and some of the simple types, are
defined in the schema for purchase orders. The other simple types are defined as
part of XML Schema'’s repertoire of built-in simple types.

Before going on to examine the purchase order schema, we digress briefly to
mention the association between the instance document and the purchase order
schema. As you can see by inspecting the instance document, the purchase order
schema is not mentioned. An instance is not actually required to reference a
schema, and although many will, we have chosen to keep this first section simple,
and to assume that any processor of the instance document can obtain the
purchase order schema without any information from the instance document. In
later sections, we will introduce explicit mechanisms for associating instances and
schemas.

2.1 The Purchase Order Schema
The purchase order schema is contained in the file po. xsd:

The Purchase Order Schema, po.xsd
<xsd: schema xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema" >

<xsd: annot ati on>
<xsd: document ati on xnl:|lang="en">
Pur chase order schema for Exanple.com
Copyright 2000 Exanple.com All rights reserved.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: el ement nanme="purchaseOrder" type="PurchaseO der Type"/>
<xsd: el ement nane="conment" type="xsd:string"/>

<xsd: conpl exType nane="Pur chaseO der Type" >

<xsd: sequence>
<xsd: el ement nane="shi pTo" type="USAddress"/>
<xsd: el ement nane="bill To" type="USAddress"/>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement name="itens" type="Itens"/>

</ xsd: sequence>

<xsd:attri bute nanme="orderDate" type="xsd:date"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="USAddr ess" >
<xsd: sequence>

<xsd: el ement nanme="nane" type="xsd: string"/>
<xsd: el ement nane="street" type="xsd:string"/>
<xsd: el ement name="city" type="xsd: string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nanme="zi p" type="xsd: deci mal "/ >

</ xsd: sequence>
<xsd:attribute nane="country" type="xsd: NMTOKEN'
fixed="US"/>
</ xsd: conpl exType>

<xsd: conpl exType nanme="I|tens">
<xsd: sequence>
<xsd: el enent nanme="item' m nCccurs="0" maxCccurs="unbounded">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="product Nane" type="xsd:string"/>
<xsd: el enent nanme="quantity">
<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el ement nanme="USPrice" type="xsd:decinmal"/>
<xsd: el enent ref="coment" m nCccurs="0"/>
<xsd: el ement nane="shi pDate" type="xsd:date" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute nanme="partNunf type="SKU' use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Stock Keeping Unit, a code for identifying products -->
<xsd: si npl eType nane="SKU'>
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}"/>
</ xsd:restriction>
</ xsd: si npl eType>

</ xsd: schema>
The purchase order schema consists of a schenma element and a variety of

subelements, most notably el enent , conpl exType, and si npl eType which
determine the appearance of elements and their content in instance documents.

Each of the elements in the schema has a prefix xsd: which is associated with
the XML Schema namespace through the declaration,

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" , that appears in the
schema element. The prefix xsd: is used by convention to denote the XML
Schema namespace, although any prefix can be used. The same prefix, and
hence the same association, also appears on the names of built-in simple types,
e.g. xsd: st ri ng. The purpose of the association is to identify the elements and
simple types as belonging to the vocabulary of the XML Schema language rather
than the vocabulary of the schema author. For the sake of clarity in the text, we
just mention the names of elements and simple types (e.g. si npl eType), and
omit the prefix.

2.2 Complex Type Definitions, Element & Attribute Declarations

In XML Schema, there is a basic difference between complex types which allow
elements in their content and may carry attributes, and simple types which cannot
have element content and cannot carry attributes. There is also a major distinction
between definitions which create new types (both simple and complex), and
declarations which enable elements and attributes with specific names and types
(both simple and complex) to appear in document instances. In this section, we
focus on defining complex types and declaring the elements and attributes that
appear within them.

New complex types are defined using the conpl exType element and such
definitions typically contain a set of element declarations, element references, and
attribute declarations. The declarations are not themselves types, but rather an
association between a name and the constraints which govern the appearance of
that name in documents governed by the associated schema. Elements are
declared using the el enent element, and attributes are declared using the

attri but e element. For example, USAddr ess is defined as a complex type, and
within the definition of USAddr ess we see five element declarations and one
attribute declaration:

Defining the USAddress Type

<xsd: conpl exType nanme="USAddr ess" >
<xsd: sequence>

<xsd: el ement nanme="nane" type="xsd: string"/>
<xsd: el ement nane="street" type="xsd:string"/>
<xsd: el ement name="city" type="xsd: string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nanme="zi p" type="xsd: deci mal "/ >

</ xsd: sequence>
<xsd:attribute nane="country" type="xsd: NMTOKEN' fi xed="US"/>
</ xsd: conpl exType>

The consequence of this definition is that any element appearing in an instance
whose type is declared to be USAddr ess (e.g. shi pTo in po. xi) must consist
of five elements and one attribute. These elements must be called nane, street,
city, state andzi p as specified by the values of the declarations’ nane
attributes, and the elements must appear in the same sequence (order) in which
they are declared. The first four of these elements will each contain a string, and
the fifth will contain a number. The element whose type is declared to be

USAddr ess may appear with an attribute called count r y which must contain the
string US.

The USAddr ess definition contains only declarations involving the simple types:
string, deci mal and NMTOKEN. In contrast, the Pur chaseOr der Type
definition contains element declarations involving complex types, e.g. USAddr ess,
although note that both declarations use the same t ype attribute to identify the
type, regardless of whether the type is simple or complex.

Defining PurchaseOrderType

<xsd: conpl exType nane="Pur chaseO der Type" >
<xsd: sequence>
<xsd: el ement nane="shi pTo" type="USAddress"/>
<xsd: el ement nane="bill To" type="USAddress"/>
<xsd: el enent ref="coment" m nCccurs="0"/>

<xsd: el ement nanme="itens" type="ltens"/>

</ xsd: sequence>

<xsd: attri bute nane="orderDate" type="xsd: date"/>
</ xsd: conpl exType>

In defining Pur chaseOr der Type, two of the element declarations, for shi pTo
and bi | | To, associate different element names with the same complex type,
namely USAddr ess. The consequence of this definition is that any element
appearing in an instance document (e.g. po. xm) whose type is declared to be
Pur chaseOr der Type must consist of elements named shi pTo and bi | | To,
each containing the five subelements (nane, street, city, st at e and zi p) that
were declared as part of USAddr ess. The shi pTo and bi | | To elements may
also carry the count r y attribute that was declared as part of USAddr ess.

The Pur chaseOr der Type definition contains an or der Dat e attribute
declaration which, like the count ry attribute declaration, identifies a simple type.
In fact, all attribute declarations must reference simple types because, unlike
element declarations, attributes cannot contain other elements or other attributes.

The element declarations we have described so far have each associated a name
with an existing type definition. Sometimes it is preferable to use an existing
element rather than declare a new element, for example:

<xsd: el enent ref="comment" m nCccurs="0"/>

This declaration references an existing element, corment , that was declared
elsewhere in the purchase order schema. In general, the value of the r ef attribute
must reference a global element, i.e. one that has been declared under schena
rather than as part of a complex type definition. The consequence of this
declaration is that an element called corment may appear in an instance
document, and its content must be consistent with that element’s type, in this

case, string.

2.2.1 Occurrence Constraints

The comrent element is optional within Pur chaseOr der Type because the value
of the m nQccur s attribute in its declaration is 0. In general, an element is
required to appear when the value of m nOccur s is 1 or more. The maximum
number of times an element may appear is determined by the value of a
maxQOccur s attribute in its declaration. This value may be a positive integer such
as 41, or the term unbounded to indicate there is no maximum number of
occurrences. The default value for both the mi nOccur s and the maxCccur s
attributes is 1. Thus, when an element such as coment is declared without a
maxQccur s attribute, the element may not occur more than once. Be sure that if
you specify a value for only the mi nCccur s attribute, it is less than or equal to the
default value of naxQccur s, i.e. itis 0 or 1. Similarly, if you specify a value for
only the maxCQCccur s attribute, it must be greater than or equal to the default value
of m nCccur s, i.e. 1 or more. If both attributes are omitted, the element must
appear exactly once.

Attributes may appear once or not at all, but no other number of times, and so the
syntax for specifying occurrences of attributes is different than the syntax for

8

elements. In particular, attributes can be declared with a use attribute to indicate
whether the attribute is r equi r ed (see for example, the par t Numattribute
declaration in po. xsd), opti onal , or even pr ohi bi t ed.

Default values of both attributes and elements are declared using the def aul t
attribute, although this attribute has a slightly different consequence in each case.
When an attribute is declared with a default value, the value of the attribute is
whatever value appears as the attribute’s value in an instance document; if the
attribute does not appear in the instance document, the schema processor
provides the attribute with a value equal to that of the def aul t attribute. Note that
default values for attributes only make sense if the attributes themselves are
optional, and so it is an error to specify both a default value and anything other
than a value of opt i onal for use.

The schema processor treats defaulted elements slightly differently. When an
element is declared with a default value, the value of the element is whatever
value appears as the element’s content in the instance document; if the element
appears without any content, the schema processor provides the element with a
value equal to that of the def aul t attribute. However, if the element does not
appear in the instance document, the schema processor does not provide the
element at all. In summary, the differences between element and attribute defaults
can be stated as: Default attribute values apply when attributes are missing, and
default element values apply when elements are empty.

The f i xed attribute is used in both attribute and element declarations to ensure
that the attributes and elements are set to particular values. For example, po. xsd
contains a declaration for the count r y attribute, which is declared with a f i xed
value US. This declaration means that the appearance of a count r y attribute in
an instance document is optional (the default value of use is opti onal),
although if the attribute does appear, its value must be US, and if the attribute
does not appear, the schema processor will provide a count ry attribute with the
value US. Note that the concepts of a fixed value and a default value are mutually
exclusive, and so it is an error for a declaration to contain both fi xed and

def aul t attributes.

The values of the attributes used in element and attribute declarations to constrain
their occurrences are summarized in Table 1.

|Tab|e 1. Occurrence Constraints for Elements and Attributes

E_Iements Attributes

(minOccurs, :
use, fixed , Notes

maxQOccurs) default
fixed, default B

1,1)- - required, -, - element/attribute must appear once, it may

have any value
1, 1) 37, - required, |[lelement/attribute must appear once, its value
’ ’ 37,- |lmust be 37

element must appear twice or more, its value

(2, unbounded) must be 37; in general, minOccurs and

37 - n/a maxOccurs values may be positive integers,
' and maxOccurs value may also be
"unbounded"
o , __|lelement/attribute may appear once, it may have
0,1) -, optional, -, any value
ootional element/attribute may appear once, if it does
(0,1) 37, - p37 " ||appear its value must be 37, if it does not
' appear its value is 37
ontional. - element/attribute may appear once; if it does
0,1)-,37 P 37 ' ' |Inot appear its value is 37, otherwise its value is

that given

element may appear once, twice, or not at all; if
the element does not appear it is not provided;
if it does appear and it is empty, its value is 37,
©,2)-, 37 n/a otherwise its value is that given; in general,
minOccurs and maxOccurs values may be
positive integers, and maxOccurs value may
also be "unbounded”

prohibited, -

(0,0) -, - element/attribute must not appear

Note that neither minOccurs, maxOccurs, nor use may appear in the
declarations of global elements and attributes.

2.2.2 Global Elements & Attributes

Global elements, and global attributes, are created by declarations that appear as
the children of the schena element. Once declared, a global element or a global
attribute can be referenced in one or more declarations using the r ef attribute as
described above. A declaration that references a global element enables the
referenced element to appear in the instance document in the context of the
referencing declaration. So, for example, the comment element appears in

po. xni at the same level as the shi pTo, bi | | To and i t ens elements because
the declaration that references comment appears in the complex type definition at
the same level as the declarations of the other three elements.

The declaration of a global element also enables the element to appear at the top-
level of an instance document. Hence pur chaseOr der , which is declared as a
global element in po. xsd, can appear as the top-level element in po. xm . Note
that this rationale will also allow a conment element to appear as the top-level
element in a document like po. xmi .

There are a number of caveats concerning the use of global elements and
attributes. One caveat is that global declarations cannot contain references; global
declarations must identify simple and complex types directly. Put concretely,
global declarations cannot contain the r ef attribute, they must use the t ype
attribute (or, as we describe shortly, be followed by an anonymous type definition).
A second caveat is that cardinality constraints cannot be placed on global
declarations, although they can be placed on local declarations that reference

10

global declarations. In other words, global declarations cannot contain the
attributes minOccurs, maxOccurs, or use.

2.2.3 Naming Conflicts

We have now described how to define new complex types (e.g.

Pur chaseOr der Type), declare elements (e.g. pur chaseOr der) and declare
attributes (e.g. or der Dat e). These activities generally involve naming, and so the
guestion naturally arises: What happens if we give two things the same name?
The answer depends upon the two things in question, although in general the
more similar are the two things, the more likely there will be a conflict.

Here are some examples to illustrate when same names cause problems. If the
two things are both types, say we define a complex type called USStates and a
simple type called USStates, there is a conflict. If the two things are a type and an
element or attribute, say we define a complex type called USAddress and we
declare an element called USAddress, there is no conflict. If the two things are
elements within different types (i.e. not global elements), say we declare one
element called name as part of the USAddress type and a second element called
name as part of the Item type, there is no conflict. (Such elements are sometimes
called local element declarations.) Finally, if the two things are both types and you
define one and XML Schema has defined the other, say you define a simple type
called decimal, there is no conflict. The reason for the apparent contradiction in
the last example is that the two types belong to different namespaces. We explore
the use of namespaces in schema in a later section.

2.3 Simple Types

The purchase order schema declares several elements and attributes that have
simple types. Some of these simple types, such as stri ng and deci nal , are
built in to XML Schema, while others are derived from the built-in’s. For example,
the par t Numattribute has a type called SKU (Stock Keeping Unit) that is derived
from st ri ng. Both built-in simple types and their derivations can be used in all
element and attribute declarations. Table 2 lists all the simple types built in to XML
Schema, along with examples of the different types.

|Tab|e 2. Simple Types Built In to XML Schema |
|Simp|e Type ||Examp|es (delimited by commas) ||Notes |
Istring ||Confirm this is electric | |
InormalizedString ||Confirm this is electric see (3) |
ltoken [Confirm this is electric see (4) |
lbyte 'L, 126 lsee (2) |
lunsignedByte l0, 126 see (2) |
loase64Binary |GpM7 I |
lhexBinary |OFB7 | |
linteger -126789, -1, 0, 1, 126789 see (2) |
Ipositivelnteger 11, 126789 see (2) |
Inegativelnteger ||-126789, -1 see (2) |

11

InonNegativelnteger |[0, 1, 126789

lsee (2)

InonPositivelnteger |-126789, -1, 0 see (2) |
lint -1, 126789675 Isee (2) |
lunsignedint 0, 1267896754 |see (2) |
llong -1, 12678967543233 see (2) |
lunsignedLong |0, 12678967543233 see (2) |
Ishort -1, 12678 see (2) |
lunsignedShort |0, 12678 see (2) |
ldecimal -1.23, 0, 123.4, 1000.00 see (2) |
equivalent to
single-precision
float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, 32-bit floating
B NaN point, NaN is "not
a number", see
(2)
equivalent to
double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, double-precision
NaN 64-bit floating
point, see (2)
true, false
boolean 1,0
ltime 113:20:00.000, 13:20:00.000-05:00 see (2) |
May 31st 1999 at
1.20pm Eastern
Standard Time
: AA. . which is 5 hours
dateTime 1999-05-31T13:20:00.000-05:00 behind Co-
Ordinated
Universal Time,
see (2)
1 year, 2 months,
duration P1Y2M3DT10H30M12.3S 3 days, 10 hours,
30 minutes, and
12.3 seconds
date 11999-05-31 |see (2) |
lgMonth ||--05-- IMay, see (2) (5) |
lgYear 11999 11999, see (2) (5) |
the month of
February 1999,
gYearMonth 1999-02 regardless of the
number of days,
see (2) (5)
the 31st day, see
gDay ---31 ’
(2) (5)
e every May 31st,
gMonthDay 05-31 see (2) (5)

12

shipTo

XML 1.0 Name
type

po:USAddress

XML Namespace
QName

NCName

USAddress

XML Namespace
NCName, i.e. a
QName without
the prefix and
colon

http://lwww.example.com/,
http://www.example.com/doc.html#ID5

en-GB, en-US, fr

valid values for
xml:lang as
defined in XML
1.0

XML 1.0ID
attribute type, see

1)

XML 1.0 IDREF
attribute type, see

1)

IDREFS

XML 1.0 IDREFS
attribute type, see

1)

ENTITY

XML 1.0 ENTITY
attribute type, see

1)

ENTITIES

XML 1.0
ENTITIES
attribute type, see

1)

NOTATION

XML 1.0
NOTATION
attribute type, see

1)

NMTOKEN

us,
Brésil

XML 1.0
NMTOKEN
attribute type, see

1)

NMTOKENS

US UK,
Brésil Canada Mexique

XML 1.0
NMTOKENS
attribute type, i.e.
a whitespace
separated list of
NMTOKEN's, see

1)

13

Notes: (1) To retain compatibility between XML Schema and XML 1.0 DTDs, the simple types ID,
IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN, NMTOKENS should only be used
in attributes. (2) A value of this type can be represented by more than one lexical format, e.g. 100
and 1.0E2 are both valid float formats representing "one hundred". However, rules have been
established for this type that define a canonical lexical format, see XML Schema Part 2. (3)
Newline, tab and carriage-return characters in a normalizedString type are converted to space
characters before schema processing. (4) As normalizedString, and adjacent space characters
are collapsed to a single space character, and leading and trailing spaces are removed. (5) The

"g" prefix signals time periods in the Gregorian calender.

New simple types are defined by deriving them from existing simple types (built-
in’s and derived). In particular, we can derive a new simple type by restricting an
existing simple type, in other words, the legal range of values for the new type are
a subset of the existing type’s range of values. We use the si npl eType element
to define and name the new simple type. We use the restri cti on element to
indicate the existing (base) type, and to identify the "facets" that constrain the
range of values. A complete list of facets is provided in Appendix B.

Suppose we wish to create a new type of integer called nyl nt eger whose range
of values is between 10000 and 99999 (inclusive). We base our definition on the
built-in simple type i nt eger , whose range of values also includes integers less
than 10000 and greater than 99999. To define nyl nt eger , we restrict the range
of the i nt eger base type by employing two facets called mi nl ncl usi ve and
maxl ncl usi ve:

Defining mylInteger, Range 10000-99999

<xsd: si npl eType nane="nyl nt eger" >
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="10000"/ >
<xsd: maxl ncl usi ve val ue="99999"/ >
</xsd:restriction>
</ xsd: si npl eType>

The example shows one particular combination of a base type and two facets
used to define nyl nt eger, but a look at the list of built-in simple types and their
facets (Appendix B) should suggest other viable combinations.

The purchase order schema contains another, more elaborate, example of a
simple type definition. A new simple type called SKU is derived (by restriction) from
the simple type st ri ng. Furthermore, we constrain the values of SKU using a
facet called pat t er n in conjunction with the regular expression "\ d{ 3} - [A- Z]
{2} " that is read "three digits followed by a hyphen followed by two upper-case
ASCII letters™:

Defining the Simple Type "SKU"

<xsd: si npl eType nane="SKU'>
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}"/>
</ xsd:restriction>
</ xsd: si npl eType>

This regular expression language is described more fully in Appendix D.
XML Schema defines fifteen facets which are listed in Appendix B. Among these,

14

the enuner at i on facet is particularly useful and it can be used to constrain the
values of almost every simple type, except the bool ean type. The enuner at i on

facet limits a simple type to a set of distinct values. For example, we can use the
enuner at i on facet to define a new simple type called USSt at e, derived from
st ri ng, whose value must be one of the standard US state abbreviations:

Using the Enumeration Facet

<xsd: si npl eType nane="USSt at e" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="AK"/ >
<xsd: enuner ati on val ue="AL"/>
<xsd: enuner ati on val ue="AR"'/ >
<l-- and soon ... -->
</ xsd:restriction>
</ xsd: si npl eType>

USSt at e would be a good replacement for the st ri ng type currently used in the
st at e element declaration. By making this replacement, the legal values of a

st at e element, i.e. the st at e subelements of bi | | To and shi pTo, would be
limited to one of AK, AL, AR, etc. Note that the enumeration values specified for a
particular type must be unique.

2.3.1 List Types

XML Schema has the concept of a list type, in addition to the so-called atomic
types that constitute most of the types listed in Table 2. (Atomic types, list types,
and the union types described in the next section are collectively called simple
types.) The value of an atomic type is indivisible from XML Schema'’s perspective.
For example, the NMTOKEN value US is indivisible in the sense that no part of US,
such as the character "S", has any meaning by itself. In contrast, list types are
comprised of sequences of atomic types and consequently the parts of a
sequence (the "atoms") themselves are meaningful. For example, NMTOKENS is a
list type, and an element of this type would be a white-space delimited list of
NMICKEN's, such as "US UK FR". XML Schema has three built-in list types, they
are NMTOKENS, | DREFS, and ENTI TI ES.

In addition to using the built-in list types, you can create new list types by
derivation from existing atomic types. (You cannot create list types from existing
list types, nor from complex types.) For example, to create a list of nyl nt eger’s:

Creating a List of myInteger’s

<xsd: si npl eType name="1ist O Myl nt Type" >
<xsd:list itenilype="nylnteger"/>
</ xsd: si mpl eType>

And an element in an instance document whose content conforms to
listOf Myl nt Type is:

<li st Of Myl nt >20003 15037 95977 95945</1i st Of Myl nt >

Several facets can be applied to list types: | engt h, m nLengt h, maxLengt h,
and enuner at i on. For example, to define a list of exactly six US states

15

(Si xUSSt at es), we first define a new list type called USSt at eLi st from
USSt at e, and then we derive Si xUSSt at es by restricting USSt at eLi st to only
six items:

List Type for Six US States

<xsd: si npl eType nane="USSt at eLi st" >
<xsd:list itenType="USState"/>
</ xsd: si npl eType>

<xsd: si npl eType nane="Si xUSSt at es" >
<xsd:restriction base="USSt at eLi st">
<xsd: |l ength val ue="6"/>
</xsd:restriction>

</ xsd: si npl eType>

Elements whose type is Si xUSSt at es must have six items, and each of the six
items must be one of the (atomic) values of the enumerated type USSt at e, for
example:

<si xSt at es>PA NY CA NY LA AK</si xSt at es>

Note that it is possible to derive a list type from the atomic type st ri ng. However,
a st ri ng may contain white space, and white space delimits the items in a list
type, so you should be careful using list types whose base type is st ri ng. For
example, suppose we have defined a list type with a | engt h facet equal to 3, and
base type st ri ng, then the following 3 item list is legal:

Asi e Europe Afrique

But the following 3 "“item" list is illegal:

Asi e Europe Amérique Latine

Even though "Amérique Latine” may exist as a single string outside of the list,
when it is included in the list, the whitespace between Amérique and Latine
effectively creates a fourth item, and so the latter example will not conform to the
3-item list type.

2.3.2 Union Types

Atomic types and list types enable an element or an attribute value to be one or
more instances of one atomic type. In contrast, a union type enables an element
or attribute value to be one or more instances of one type drawn from the union of
multiple atomic and list types. To illustrate, we create a union type for representing
American states as singleton letter abbreviations or lists of numeric codes. The

zi pUni on union type is built from one atomic type and one list type:

Union Type for Zipcodes

<xsd: si npl eType nane="zi pUni on">
<xsd: uni on menber Types="USState |istOf Wl ntType"/>
</ xsd: si nmpl eType>

16

When we define a union type, the nenber Types attribute value is a list of all the
types in the union.

Now, assuming we have declared an element called zi ps of type zi pUni on,
valid instances of the element are:

<zi ps>CA</ zi ps>
<zi ps>95630 95977 95945</ zi ps>

<zi ps>AK</ zi ps>

Two facets, pat t er n and enuner at i on, can be applied to a union type.

2.4 Anonymous Type Definitions

Schemas can be constructed by defining sets of named types such as

Pur chaseOr der Type and then declaring elements such as pur chaseOr der
that reference the types using the t ype= construction. This style of schema
construction is straightforward but it can be unwieldy, especially if you define many
types that are referenced only once and contain very few constraints. In these
cases, a type can be more succinctly defined as an anonymous type which saves
the overhead of having to be named and explicitly referenced.

The definition of the type | t ens in po. xsd contains two element declarations that
use anonymous types (i t emand quant i t y). In general, you can identify
anonymous types by the lack of a t ype=in an element (or attribute) declaration,
and by the presence of an un-named (simple or complex) type definition:

Two Anonymous Type Definitions

<xsd: conpl exType nanme="Itens">
<xsd: sequence>
<xsd: el ement nanme="item m nCccurs="0" maxCccurs="unbounded">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="product Name" type="xsd:string"/>
<xsd: el enent name="quantity">
<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el enent nanme="USPrice" type="xsd:decinmal"/>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement nanme="shi pbDate" type="xsd:date" minCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="partNuni type="SKU' use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

In the case of the i t emelement, it has an anonymous complex type consisting of
the elements pr oduct Nane, quanti ty, USPri ce, conment , and shi pDat e,

17

and an attribute called par t Num In the case of the quant i t y element, it has an
anonymous simple type derived from i nt eger whose value ranges between 1
and 99.

2.5 Element Content

The purchase order schema has many examples of elements containing other
elements (e.g. i t ens), elements having attributes and containing other elements
(e.g. shi pTo), and elements containing only a simple type of value (e.g.

USPr i ce). However, we have not seen an element having attributes but
containing only a simple type of value, nor have we seen an element that contains
other elements mixed with character content, nor have we seen an element that
has no content at all. In this section we’ll examine these variations in the content
models of elements.

2.5.1 Complex Types from Simple Types

Let us first consider how to declare an element that has an attribute and contains
a simple value. In an instance document, such an element might appear as:

<international Price currency="EUR'>423. 46</international Price>

The purchase order schema declares a USPr i ce element that is a starting point:

<xsd: el enent name="USPrice" type="decinmal"/>

Now, how do we add an attribute to this element? As we have said before, simple
types cannot have attributes, and deci nal is a simple type. Therefore, we must
define a complex type to carry the attribute declaration. We also want the content
to be simple type deci nmal . So our original question becomes: How do we define
a complex type that is based on the simple type deci mal ? The answer is to
derive a new complex type from the simple type deci nal :

Deriving a Complex Type from a Simple Type

<xsd: el enent nanme="international Price">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: deci nal ">
<xsd:attribute nane="currency" type="xsd:string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

We use the conpl exType element to start the definition of a new (anonymous)
type. To indicate that the content model of the new type contains only character
data and no elements, we use a si npl eCont ent element. Finally, we derive the
new type by extending the simple deci nmal type. The extension consists of
adding a cur r ency attribute using a standard attribute declaration. (We cover
type derivation in detail in Section 4.) The i nt er nati onal Pri ce element
declared in this way will appear in an instance as shown in the example at the
beginning of this section.

18

2.5.2 Mixed Content

The construction of the purchase order schema may be characterized as
elements containing subelements, and the deepest subelements contain
character data. XML Schema also provides for the construction of schemas where
character data can appear alongside subelements, and character data is not
confined to the deepest subelements.

To illustrate, consider the following snippet from a customer letter that uses some
of the same elements as the purchase order:

Snippet of Customer Letter

<l ett er Body>

<sal ut ati on>Dear M. <nanme>Robert Sm th</nane>. </sal utation>
Your order of <quantity>l</quantity> <product Name>Baby

Moni t or </ pr oduct Nane> shi pped from our warehouse on

<shi pDat €>1999- 05- 21</ shi pDat e>.

</l etter Body>

Notice the text appearing between elements and their child elements. Specifically,
text appears between the elements sal ut ati on, quanti ty, product Nane and
shi pDat e which are all children of | et t er Body, and text appears around the
element name which is the child of a child of | et t er Body. The following snippet
of a schema declares | et t er Body:

Snippet of Schema for Customer Letter

<xsd: el ement nane="| etter Body" >
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el enent name="sal utation">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: el ement nanme="nane" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nane="quantity" type="xsd: posi tivel nteger"/>
<xsd: el ement nane="product Nane" type="xsd:string"/>
<xsd: el ement nane="shi pDat e" type="xsd: date" m nCccurs="0"/>
<I-- etc. -->

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

The elements appearing in the customer letter are declared, and their types are
defined using the el enent and conpl exType element constructions we have
seen before. To enable character data to appear between the child-elements of
| et t er Body, the mi xed attribute on the type definition is set to true.

Note that the m xed model in XML Schema differs fundamentally from the m xed
model in XML 1.0. Under the XML Schema mixed model, the order and number of
child elements appearing in an instance must agree with the order and number of
child elements specified in the model. In contrast, under the XML 1.0 mixed
model, the order and number of child elements appearing in an instance cannot

19

be constrained. In summary, XML Schema provides full validation of mixed
models in contrast to the partial schema validation provided by XML 1.0.

2.5.3 Empty Content

Now suppose that we want the i nt er nat i onal Pri ce element to convey both
the unit of currency and the price as attribute values rather than as separate
attribute and content values. For example:

<international Price currency="EUR' val ue="423. 46"/ >

Such an element has no content at all; its content model is empty. To define a
type whose content is empty, we essentially define a type that allows only
elements in its content, but we do not actually declare any elements and so the
type’s content model is empty:

An Empty Complex Type

<xsd: el ement name="international Price">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd:restriction base="xsd: anyType" >
<xsd:attribute nane="currency" type="xsd:string"/>
<xsd: attribute nane="val ue" type="xsd: deci mal "/ >
</xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

In this example, we define an (anonymous) type having conpl exCont ent , i.e.
only elements. The conpl exCont ent element signals that we intend to restrict or
extend the content model of a complex type, and the restri cti on of anyType
declares two attributes but does not introduce any element content (see Section
4.4 for more details on restriction). The i nt er nat i onal Pri ce element declared
in this way may legitimately appear in an instance as shown in the example above.

The preceding syntax for an empty-content element is relatively verbose, and it is
possible to declare the i nt er nat i onal Pri ce element more compactly:

Shorthand for an Empty Complex Type

<xsd: el ement name="international Price">
<xsd: conpl exType>
<xsd: attri bute nane="currency" type="xsd:string"/>
<xsd: attri bute nane="val ue" type="xsd: deci mal "/ >
</ xsd: conpl exType>
</ xsd: el ement >

This compact syntax works because a complex type defined without any

si npl eCont ent or conpl exCont ent is interpreted as shorthand for complex
content that restricts any Type.

2.5.4 anyType

The anyType represents an abstraction called the ur - t ype which is the base

20

type from which all simple and complex types are derived. An anyType type does
not constrain its content in any way. It is possible to use anyType like other types,
for example:

<xsd: el ement nane="anyt hi ng" type="xsd: anyType"/>

The content of the element declared in this way is unconstrained, so the element

value may be 423.46, but it may be any other sequence of characters as well, or

indeed a mixture of characters and elements. In fact, anyType is the default type
when none is specified, so the above could also be written as follows:

<xsd: el ement nane="anyt hi ng"/>

If unconstrained element content is needed, for example in the case of elements
containing prose which requires embedded markup to support internationalization,
then the default declaration or a slightly restricted form of it may be suitable. The

t ext type described in Section 5.5 is an example of such a type that is suitable
for such purposes.

2.6 Annotations

XML Schema provides three elements for annotating schemas for the benefit of
both human readers and applications. In the purchase order schema, we put a
basic schema description and copyright information inside the docunent at i on
element, which is the recommended location for human readable material. We
recommend you use the xni : | ang attribute with any docunent at i on elements
to indicate the language of the information. Alternatively, you may indicate the
language of all information in a schema by placing an xm : | ang attribute on the
schenma element.

The appl nf o element, which we did not use in the purchase order schema, can
be used to provide information for tools, stylesheets and other applications. An
interesting example using appl nf o is a schema that describes the simple types in
XML Schema Part 2: Datatypes. Information describing this schema, e.g. which
facets are applicable to particular simple types, is represented inside appl nf o
elements, and this information was used by an application to automatically
generate text for the XML Schema Part 2 document.

Both docunent ati on and appl nf o appear as subelements of annot at i on,
which may itself appear at the beginning of most schema constructions. To
illustrate, the following example shows annot at i on elements appearing at the
beginning of an element declaration and a complex type definition:

Annotations in Element Declaration & Complex Type Definition

<xsd: el enent nanme="international Price">
<xsd: annot at i on>
<xsd: docunent ati on xnl:|lang="en">
el ement decl ared with anonynous type
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: annot at i on>

21

<xsd: docunentati on xm : |l ang="en">
enpty anonynous type with 2 attributes
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd:restriction base="xsd: anyType" >
<xsd:attribute nane="currency" type="xsd:string"/>
<xsd: attribute nane="val ue" type="xsd: deci mal "/ >
</ xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

The annot at i on element may also appear at the beginning of other schema
constructions such as those indicated by the elements schensg, si npl eType,
andattribute.

2.7 Building Content Models

The definitions of complex types in the purchase order schema all declare
sequences of elements that must appear in the instance document. The
occurrence of individual elements declared in the so-called content models of
these types may be optional, as indicated by a 0 value for the attribute

m nCccur s (e.g. in coment), or be otherwise constrained depending upon the
values of mi nOccur s and maxQccur s. XML Schema also provides constraints
that apply to groups of elements appearing in a content model. These constraints
mirror those available in XML 1.0 plus some additional constraints. Note that the
constraints do not apply to attributes.

XML Schema enables groups of elements to be defined and named, so that the
elements can be used to build up the content models of complex types (thus
mimicking common usage of parameter entities in XML 1.0). Un-named groups of
elements can also be defined, and along with elements in named groups, they can
be constrained to appear in the same order (sequence) as they are declared.
Alternatively, they can be constrained so that only one of the elements may
appear in an instance.

To illustrate, we introduce two groups into the Pur chaseOr der Type definition
from the purchase order schema so that purchase orders may contain either
separate shipping and billing addresses, or a single address for those cases in
which the shippee and billee are co-located:

Nested Choice and Sequence Groups

<xsd: conpl exType nanme="Pur chaseO der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref ="shi pAndBi I | "/ >
<xsd: el ement nane="si ngl eUSAddr ess" type="USAddr ess"/ >
</ xsd: choi ce>
<xsd: el enent ref="coment" m nCccurs="0"/>
<xsd: el ement nane="itens" type="ltens"/>
</ xsd: sequence>
<xsd: attri bute nane="orderDate" type="xsd: date"/>
</ xsd: conpl exType>

<xsd: group nane="shi pAndBi | | ">
<xsd: sequence>

22

<xsd: el ement nane="shi pTo" type="USAddress"/>
<xsd: el ement nane="bill To" type="USAddress"/>
</ xsd: sequence>
</ xsd: gr oup>

The choi ce group element allows only one of its children to appear in an
instance. One child is an inner gr oup element that references the named group
shi pAndBi | | consisting of the element sequence shi pTo, bi I | To, and the
second child is a si ngl eUSAddr ess. Hence, in an instance document, the

pur chaseOr der element must contain either a shi pTo element followed by a

bi I | To element or a si ngl eUSAddr ess element. The choi ce group is followed
by the conment and i t ens element declarations, and both the choi ce group
and the element declarations are children of a sequence group. The effect of
these various groups is that the address element(s) must be followed by coment
and i t ens elements in that order.

There exists a third option for constraining elements in a group: All the elements in
the group may appear once or not at all, and they may appear in any order. The
al | group (which provides a simplified version of the SGML &-Connector) is
limited to the top-level of any content model. Moreover, the group’s children must
all be individual elements (no groups), and no element in the content model may
appear more than once, i.e. the permissible values of m nCccur s and

maxQccur s are 0 and 1. For example, to allow the child elements of

pur chaseOr der to appear in any order, we could redefine

Pur chaseOr der Type as:

An 'All’ Group

<xsd: conpl exType nanme="Pur chaseO der Type" >
<xsd: al | >
<xsd: el ement nane="shi pTo" type="USAddress"/>
<xsd: el ement nane="bill To" type="USAddress"/>
<xsd: el enent ref="coment" m nCccurs="0"/>
<xsd: el ement nane="itens" type="ltens"/>
</ xsd: al | >
<xsd: attri bute nane="orderDate" type="xsd: date"/>
</ xsd: conpl exType>

By this definition, a conmrent element may optionally appear within

pur chaseOr der, and it may appear before or after any shi pTo, bi | | To and

I t ens elements, but it can appear only once. Moreover, the stipulations of an

al | group do not allow us to declare an element such as comrent outside the
group as a means of enabling it to appear more than once. XML Schema
stipulates that an al | group must appear as the sole child at the top of a content
model. In other words, the following is illegal:

lllegal Example with an 'All’ Group

<xsd: conpl exType nanme="Pur chaseOr der Type" >
<xsd: sequence>
<xsd:al | >
<xsd: el ement nanme="shi pTo" type="USAddress"/>
<xsd: el ement nanme="bill To" type="USAddress"/>
<xsd: el emrent name="itens" type="Itens"/>
</xsd:al |l >
<xsd: sequence>
<xsd: el ement ref="coment" nmi nCccurs="0" nmaxCccurs="unbounded"/ >

23

</ xsd: sequence>

</ xsd: sequence>

<xsd: attri bute nane="orderDate" type="xsd: date"/>
</ xsd: conpl exType>

Finally, named and un-named groups that appear in content models (represented
by gr oup and choi ce, sequence, al | respectively) may carry m nOccur s and
maxQOccur s attributes. By combining and nesting the various groups provided by
XML Schema, and by setting the values of m nCccur s and maxQccur s, itis
possible to represent any content model expressible with an XML 1.0 DTD.
Furthermore, the al | group provides additional expressive power.

2.8 Attribute Groups

Suppose we want to provide more information about each item in a purchase
order, for example, each item’s weight and preferred shipping method. We can
accomplish this by adding wei ght Kg and shi pBy attribute declarations to the
i t emelement’s (anonymous) type definition:

Adding Attributes to the Inline Type Definition

<xsd: el ement name="Item' m nCccurs="0" maxQccurs="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="product Nanme" type="xsd:string"/>
<xsd: el ement nane="quantity">
<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el ement nane="USPrice" type="xsd:decinmal"/>
<xsd: el enent ref="coment" m nCccurs="0"/>
<xsd: el ement nane="shi pbDate" type="xsd:date" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute nane="partNunf type="SKU' use="required"/>
<l-- add wei ghtKg and shipBy attributes -->
<xsd:attribute nane="wei ght Kg" type="xsd: decinal"/>
<xsd:attribute nane="shi pBy">
<xsd: si npl eType>
<xsd:restriction base="xsd: string">
<xsd: enuneration value="air"/>
<xsd: enuneration val ue="land"/ >
<xsd: enuneration val ue="any"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri but e>
</ xsd: conpl exType>
</ xsd: el enent >

Alternatively, we can create a named attribute group containing all the desired
attributes of an i t emelement, and reference this group by name inthe i t em
element declaration:

Adding Attributes Using an Attribute Group

<xsd: el ement nane="itent minCccurs="0" maxCccurs="unbounded" >
<xsd: conpl exType>
<xsd: sequence>

24

<xsd: el ement nane="product Nane" type="xsd:string"/>
<xsd: el ement nane="quantity">

<xsd: si npl eType>

<xsd:restriction base="xsd: positivelnteger">

<xsd: maxExcl usi ve val ue="100"/>

</xsd:restriction>

</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el ement nane="USPrice" type="xsd:decinmal"/>
<xsd: el enent ref="coment" m nCccurs="0"/>
<xsd: el ement nane="shi pDate" type="xsd:date" m nCccurs="0"/>
</ xsd: sequence>

<l-- attributeGoup replaces individual declarations -->
<xsd:attributeGoup ref="ItenDelivery"/>

</ xsd: conpl exType>

</ xsd: el ement >

<xsd: attri buteGoup nanme="ItenDelivery">
<xsd:attribute nane="part Nunt type="SKU' use="required"/>
<xsd: attribute nane="wei ght Kg" type="xsd: decinal"/>
<xsd:attribute nane="shi pBy">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuneration value="air"/>
<xsd: enuneration val ue="Iland"/ >
<xsd: enuneration val ue="any"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: attri but eG oup>

Using an attribute group in this way can improve the readability of schemas, and
facilitates updating schemas because an attribute group can be defined and
edited in one place and referenced in multiple definitions and declarations. These
characteristics of attribute groups make them similar to parameter entities in XML
1.0. Note that an attribute group may contain other attribute groups. Note also that
both attribute declarations and attribute group references must appear at the end
of complex type definitions.

2.9 Nil Values

One of the purchase order items listed in po. xm , the Lawnnower , does not have
a shi pDat e element. Within the context of our scenario, the schema author may
have intended such absences to indicate i t ens not yet shipped. But in general,
the absence of an element does not have any particular meaning: It may indicate
that the information is unknown, or not applicable, or the element may be absent
for some other reason. Sometimes it is desirable to represent an unshipped i t em
unknown information, or inapplicable information explicitly with an element, rather
than by an absent element. For example, it may be desirable to represent a "null”
value being sent to or from a relational database with an element that is present.
Such cases can be represented using XML Schema'’s nil mechanism which
enables an element to appear with or without a non-nil value.

XML Schema’s nil mechanism involves an "out of band" nil signal. In other words,
there is no actual nil value that appears as element content, instead there is an
attribute to indicate that the element content is nil. To illustrate, we modify the

shi pDat e element declaration so that nils can be signalled:

25

<xsd: el enent nane="shi pDate" type="xsd:date" nillable="true"/>

And to explicitly represent that shi pDat e has a nil value in the instance
document, we set the nil attribute (from the XML Schema namespace for
instances) to true:

<shi pDat e xsi:nil="true"></shi pDate>

The ni | attribute is defined as part of the XML Schema namespace for instances,
htt p: // www. w3. or g/ 2001/ XM_Schema- i nst ance, and so it must appear in
the instance document with a prefix (such as xsi :) associated with that
namespace. (As with the xsd: prefix, the xsi : prefix is used by convention only.)
Note that the nil mechanism applies only to element values, and not to attribute
values. An element with xsi : ni | ="t rue” may not have any element content but
it may still carry attributes.

3. Advanced Concepts I: Namespaces, Schemas &
Qualification

A schema can be viewed as a collection (vocabulary) of type definitions and
element declarations whose names belong to a particular namespace called a
target namespace. Target namespaces enable us to distinguish between
definitions and declarations from different vocabularies. For example, target
namespaces would enable us to distinguish between the declaration for el enent
in the XML Schema language vocabulary, and a declaration for el enent ina
hypothetical chemistry language vocabulary. The former is part of the

htt p: // www. W3. or g/ 2001/ XM_Schena target namespace, and the latter is
part of another target namespace.

When we want to check that an instance document conforms to one or more
schemas (through a process called schema validation), we need to identify which
element and attribute declarations and type definitions in the schemas should be
used to check which elements and attributes in the instance document. The target
namespace plays an important role in the identification process. We examine the
role of the target namespace in the next section.

The schema author also has several options that affect how the identities of
elements and attributes are represented in instance documents. More specifically,
the author can decide whether or not the appearance of locally declared elements
and attributes in an instance must be qualified by a namespace, using either an
explicit prefix or implicitly by default. The schema author’s choice regarding
gualification of local elements and attributes has a number of implications
regarding the structures of schemas and instance documents, and we examine
some of these implications in the following sections.

3.1 Target Namespaces & Unqualified Locals

In a new version of the purchase order schema, pol. xsd, we explicitly declare a
target namespace, and specify that both locally defined elements and locally

26

defined attributes must be unqualified. The target namespace in pol. xsd is
http://ww. exanpl e. com POL, as indicated by the value of the
t ar get Nanespace attribute.

Qualification of local elements and attributes can be globally specified by a pair of
attributes, el enent For nDef aul t and at t ri but eFor nDef aul t , on the
schema element, or can be specified separately for each local declaration using
the f or mattribute. All such attributes’ values may each be set to unqual i fi ed
orqual i fi ed, to indicate whether or not locally declared elements and attributes
must be unqualified.

In pol. xsd we globally specify the qualification of elements and attributes by
setting the values of both el enent For nDef aul t and at t ri but eFor nDef aul t
to unqual i fi ed. Strictly speaking, these settings are unnecessary because the
values are the defaults for the two attributes; we make them here to highlight the
contrast between this case and other cases we describe later.

Purchase Order Schema with Target Namespace, pol.xsd

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns: po="http://ww. exanpl e. com POL"
t ar get Namespace="htt p: // www. exanpl e. con’ POL"
el ement For nDef aul t =" unqual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<el enment nane="purchaseOrder" type="po: PurchaseOr der Type"/ >
<el enent nanme="comment " type="string"/>

<conpl exType nane="Pur chaseOr der Type" >

<sequence>
<el enent nanme="shi pTo" t ype="po: USAddr ess"/ >
<el enent nanme="bill To" t ype="po: USAddr ess"/ >
<el enent ref="po:comment"” m nCccurs="0"/>
<I-- etc. -->

</ sequence>

<I-- etc. -->

</ conpl exType>

<conpl exType nane="USAddr ess" >

<sequence>

<el enent nanme="nang" type="string"/>
<el enent nane="street" type="string"/>
<I-- etc. -->

</ sequence>
</ conpl exType>

<l-- etc. -->

</ schema>

To see how the target namespace of this schema is populated, we examine in

turn each of the type definitions and element declarations. Starting from the end of
the schema, we first define a type called USAddr ess that consists of the elements
nane, street, etc. One consequence of this type definition is that the

USAddr ess type is included in the schema’s target namespace. We next define a
type called Pur chaseOr der Type that consists of the elements shi pTo, bi | | To,
coment , etc. Pur chaseOr der Type is also included in the schema’s target
namespace. Notice that the type references in the three element declarations are
prefixed, i.e. po: USAddr ess, po: USAddr ess and po: conmrent , and the prefix is

27

associated with the namespace htt p: / / www. exanpl e. coml POL. This is the
same namespace as the schema’s target namespace, and so a processor of this
schema will know to look within this schema for the definition of the type

USAddr ess and the declaration of the element comment . It is also possible to
refer to types in another schema with a different target namespace, hence
enabling re-use of definitions and declarations between schemas.

At the beginning of the schema pol. xsd, we declare the elements

pur chaseOr der and comrent . They are included in the schema’s target
namespace. The pur chaseOr der element’s type is prefixed, for the same
reason that USAddr ess is prefixed. In contrast, the corment element’s type,

st ring, is not prefixed. The pol. xsd schema contains a default namespace
declaration, and so unprefixed types such as st ri ng and unprefixed elements
such as el enent and conpl exType are associated with the default namespace
htt p: / / www. w3. or g/ 2001/ XM_Schenma. In fact, this is the target namespace
of XML Schema itself, and so a processor of pol. xsd will know to look within the
schema of XML Schema -- otherwise known as the "schema for schemas" -- for
the definition of the type st ri ng and the declaration of the element called

el enent .

Let us now examine how the target namespace of the schema affects a
conforming instance document:

A Purchase Order with Unqualified Locals, pol.xml

<?xm version="1.0"7?>
<apo: purchaseOrder xm ns:apo="http://ww. exanpl e. com POL"
or der Dat e="1999- 10- 20" >
<shi pTo country="US">
<nane>Al i ce Sm t h</ nanme>
<street>123 Maple Street</street>
<l-- etc. -->
</ shi pTo>
<bi |l To country="US">
<nane>Robert Snith</nanme>
<street>8 CGak Avenue</street>

<l-- etc. -->
</billTo>
<apo: conmment>Hurry, ny lawn is going wild!</apo: comment >
<l-- etc. -->

</ apo: pur chaseCOr der >

The instance document declares one namespace,

http://ww. exanpl e. com POL, and associates it with the prefix apo: . This
prefix is used to qualify two elements in the document, namely pur chaseOr der
and conmrent . The namespace is the same as the target namespace of the
schema in pol. xsd, and so a processor of the instance document will know to
look in that schema for the declarations of pur chaseOr der and commrent . In
fact, target namespaces are so named because of the sense in which there exists
a target namespace for the elements pur chaseOr der and conment . Target
namespaces in the schema therefore control the validation of corresponding
namespaces in the instance.

The prefix apo: is applied to the global elements pur chaseOr der and conment
elements. Furthermore, el enent For nDef aul t and attri but eFor nDef aul t

28

require that the prefix is not applied to any of the locally declared elements such
as shi pTo, bi | | To, nane and st r eet, and it is not applied to any of the
attributes (which were all declared locally). The pur chaseOr der and conment
are global elements because they are declared in the context of the schema as a
whole rather than within the context of a particular type. For example, the
declaration of pur chaseOr der appears as a child of the schena element in
pol. xsd, whereas the declaration of shi pTo appears as a child of the

conpl exType element that defines Pur chaseOr der Type.

When local elements and attributes are not required to be qualified, an instance
author may require more or less knowledge about the details of the schema to
create schema valid instance documents. More specifically, if the author can be
sure that only the root element (such as pur chaseOr der) is global, then it is a
simple matter to qualify only the root element. Alternatively, the author may know
that all the elements are declared globally, and so all the elements in the instance
document can be prefixed, perhaps taking advantage of a default namespace
declaration. (We examine this approach in Section 3.3.) On the other hand, if
there is no uniform pattern of global and local declarations, the author will need
detailed knowledge of the schema to correctly prefix global elements and
attributes.

3.2 Qualified Locals

Elements and attributes can be independently required to be qualified, although
we start by describing the qualification of local elements. To specify that all locally
declared elements in a schema must be qualified, we set the value of

el enent For nDef aul t to qual i fi ed:

Modifications to pol.xsd for Qualified Locals

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: po="http://ww. exanpl e. com POL"
t ar get Namespace="ht t p: / / ww. exanpl e. conf POL"
el emrent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<el ement nane="purchaseOrder" type="po: PurchaseO der Type"/ >
<el ement nane="conment " type="string"/>

<conpl exType nane="Pur chaseO der Type" >
<l-- etc. -->
</ conpl exType>

<l-- etc. -->

</ schema>

And in this conforming instance document, we qualify all the elements explicitly:

A Purchase Order with Explicitly Qualified Locals

<?xm version="1.0"?>
<apo: purchaseOrder xm ns:apo="http://ww. exanpl e. com POL"
or der Dat e="1999- 10- 20" >
<apo: shi pTo count ry="US">
<apo: nanme>Al i ce Sm t h</ apo: name>
<apo: street>123 Mapl e Street</apo: street>
<l-- etc. -->

29

</ apo: shi pTo>
<apo: bill To country="US">
<apo: nane>Robert Sm t h</apo: nane>
<apo: street>8 Qak Avenue</apo: street>
<I-- etc. -->
</ apo: bill To>
<apo: comrent >Hurry, my lawn i s going wld!</apo: comrent >
<I-- etc. -->
</ apo: pur chaseOr der >

Alternatively, we can replace the explicit qualification of every element with implicit
gualification provided by a default namespace, as shown here in po2. xm :

A Purchase Order with Default Qualified Locals, po2.xml

<?xm version="1.0"?>
<pur chaseOrder xm ns="http://ww. exanpl e. coni POL"
or der Dat e="1999- 10- 20" >
<shi pTo country="US">
<nane>Al i ce Sm t h</ nane>
<street>123 Maple Street</street>
<l-- etc. -->
</ shi pTo>
<bi |l To country="US">
<nane>Robert Sm t h</ nanme>
<street>8 CGak Avenue</street>

<l-- etc. -->
</billTo>
<conment>Hurry, ny lawn is going wld!</coment>
<l-- etc. -->

</ pur chaseOr der >

In po2. xm , all the elements in the instance belong to the same namespace, and
the namespace statement declares a default namespace that applies to all the
elements in the instance. Hence, it is unnecessary to explicitly prefix any of the
elements. As another illustration of using qualified elements, the schemas in
Section 5 all require qualified elements.

Qualification of attributes is very similar to the qualification of elements. Attributes
that must be qualified, either because they are declared globally or because the
attri but eFor nDef aul t attribute is setto qual i fi ed, appear prefixed in
instance documents. One example of a qualified attribute is the xsi : ni | attribute
that was introduced in Section 2.9. In fact, attributes that are required to be
qualified must be explicitly prefixed because the XML-Namespaces specification
does not provide a mechanism for defaulting the namespaces of attributes.
Attributes that are not required to be qualified appear in instance documents
without prefixes, which is the typical case.

The qualification mechanism we have described so far has controlled all local
element and attribute declarations within a particular target namespace. It is also
possible to control qualification on a declaration by declaration basis using the

f or mattribute. For example, to require that the locally declared attribute

publ i cKey is qualified in instances, we declare it in the following way:

Requiring Qualification of Single Attribute

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns: po="htt p://ww. exanpl e. com POL"
t ar get Namespace="htt p: // www. exanpl e. con’ POL"

30

el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<l-- etc. -->
<el ement nane="secure">
<conpl exType>
<sequence>
<!-- elenent declarations -->
</ sequence>
<attribute nane="publicKey" type="base64Bi nary" forne"qualified"/>
</ conpl exType>
</ el ement >
</ schema>

Notice that the value of the f or mattribute overrides the value of the

attri but eFor nDef aul t attribute for the publ i cKey attribute only. Also, the
f or mattribute can be applied to an element declaration in the same manner. An
instance document that conforms to the schema is:

Instance with a Qualified Attribute

<?xm version="1.0"?>

<pur chaseOrder xm ns="http://ww. exanpl e. coni POL"
xm ns: po="http://ww. exanpl e. conf POL"
or der Dat e="1999- 10- 20" >

<l-- etc. -->

<secur e po: publicKey="GM" >
<l-- etc. -->

</ secure>

</ pur chaseOr der >

3.3 Global vs. Local Declarations

Another authoring style, applicable when all element names are unique within a
namespace, is to create schemas in which all elements are global. This is similar
in effect to the use of <IELEMENT> in a DTD. In the example below, we have
modified the original pol. xsd such that all the elements are declared globally.
Notice that we have omitted the el enent For nDef aul t and

attri but eFor nDef aul t attributes in this example to emphasize that their
values are irrelevant when there are only global element and attribute
declarations.

Modified version of pol.xsd using only global element declarations

<scherma xm ns="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: po="http://ww. exanpl e. com POL"
t ar get Namespace="htt p: // www. exanpl e. conf POL" >

<el enent name="purchaseOrder" type="po: PurchaseOr der Type"/ >

<el enent name="shi pTo" type="po: USAddress"/>
<el enent name="bill To" type="po: USAddress"/>
<el ement nane="conment" type="string"/>

<el ement nane="name" type="string"/>
<el ement nane="street" type="string"/>

<conpl exType nane="Pur chaseO der Type" >
<sequence>

<el ement ref="po:shipTo"/>

<el ement ref="po:bill To"/>

<el enent ref="po:conment" mi nCccurs="0"/>

31

<I-- etc. -->
</ sequence>
</ conpl exType>

<conpl exType nane="USAddr ess" >
<sequence>
<el enent ref="po: nane"/ >
<el enment ref="po:street"/>
<I-- etc. -->
</ sequence>
</ conpl exType>

<l-- etc. -->

</ schema>

This "global" version of pol. xsd will validate the instance document po2. xmi
which, as we described previously, is also schema valid against the "qualified"
version of pol. xsd. In other words, both schema approaches can validate the
same, namespace defaulted, document. Thus, in one respect the two schema
approaches are similar, although in another important respect the two schema
approaches are very different. Specifically, when all elements are declared
globally, it is not possible to take advantage of local names. For example, you can
only declare one global element called "title". However, you can locally declare
one element called "title" that has a string type, and is a subelement of "book".
Within the same schema (target namespace) you can declare a second element
also called "title" that is an enumeration of the values "Mr Mrs Ms".

3.4 Undeclared Target Namespaces

In Section 2 we explained the basics of XML Schema using a schema that did not
declare a target namespace and an instance document that did not declare a
namespace. So the question naturally arises: What is the target namespace in
these examples and how is it referenced?

In the purchase order schema, po. xsd, we did not declare a target namespace
for the schema, nor did we declare a prefix (like po: above) associated with the
schema’s target namespace with which we could refer to types and elements
defined and declared within the schema. The consequence of not declaring a
target namespace in a schema is that the definitions and declarations from that
schema, such as USAddr ess and pur chaseOr der, are referenced without
namespace qualification. In other words there is no explicit namespace prefix
applied to the references nor is there any implicit namespace applied to the
reference by default. So for example, the pur chaseOr der element is declared
using the type reference Pur chaseOr der Type. In contrast, all the XML Schema
elements and types used in po. xsd are explicitly qualified with the prefix xsd:
that is associated with the XML Schema namespace.

In cases where a schema is designed without a target namespace, it is strongly
recommended that all XML Schema elements and types are explicitly qualified
with a prefix such as xsd: that is associated with the XML Schema namespace
(as in po. xsd). The rationale for this recommendation is that if XML Schema
elements and types are associated with the XML Schema namespace by default,
i.e. without prefixes, then references to XML Schema types may not be
distinguishable from references to user-defined types.

32

Element declarations from a schema with no target namespace validate
unqualified elements in the instance document. That is, they validate elements for
which no namespace qualification is provided by either an explicit prefix or by
default (xm ns:). So, to validate a traditional XML 1.0 document which does not
use namespaces at all, you must provide a schema with no target namespace. Of
course, there are many XML 1.0 documents that do not use hamespaces, so
there will be many schema documents written without target namespaces; you
must be sure to give to your processor a schema document that corresponds to
the vocabulary you wish to validate.

4. Advanced Concepts Il: The International Purchase
Order

The purchase order schema described in Chapter 2 was contained in a single
document, and most of the schema constructions-- such as element declarations
and type definitions-- were constructed from scratch. In reality, schema authors
will want to compose schemas from constructions located in multiple documents,
and to create new types based on existing types. In this section, we examine
mechanisms that enable such compositions and creations.

4.1 A Schema in Multiple Documents

As schemas become larger, it is often desirable to divide their content among
several schema documents for purposes such as ease of maintenance, access
control, and readability. For these reasons, we have taken the schema constructs
concerning addresses out of po. xsd, and put them in a new file called

addr ess. xsd. The modified purchase order schema file is called i po. xsd:

The International Purchase Order Schema, ipo.xsd

<schema t ar get Namespace="htt p: //ww. exanpl e. com | PO'
xm ns="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: i po="http://ww. exanpl e. conf | PO' >

<annot at i on>

<docunent ati on xnl ;| ang="en">
I nternational Purchase order schema for Exanpl e.com
Copyright 2000 Exanple.com Al rights reserved.

</ docunent at i on>

</ annot ati on>

<!-- include address constructs -->

<i ncl ude

schemalLocati on="htt p: // ww. exanpl e. com schenas/ addr ess. xsd"/ >
<el enent nane="purchaseOrder"” type="i po: PurchaseOr der Type"/ >
<el enent nane="coment" type="string"/>

<conpl exType nane="Pur chaseOr der Type" >
<sequence>

<el enent name="shi pTo" type="i po: Addr ess"/ >
<el enent name="bill To" type="i po: Addr ess"/ >
<el enent ref="ipo:comment” m nCccurs="0"/>

<el enent nanme="itens" type="ipo:ltens"/>

</ sequence>
<attribute nane="orderDate" type="date"/>

33

</ conpl exType>

<conpl exType nane="Iltens" >
<sequence>
<el ement name="item' m nCccurs="0" maxQccurs="unbounded" >
<conpl exType>
<seguence>
<el enent name="product Nane" type="string"/>
<el ement name="quantity">
<si npl eType>
<restriction base="positivelnteger">
<maxExcl usi ve val ue="100"/>
</restriction>
</ si nmpl eType>
</ el ement >

<el enent name="USPri ce" type="deci mal "/ >
<el enment ref="ipo:comment” m nCccurs="0"/>
<el enent name="shi pDat e" type="date" m nCccurs="0"/>

</ sequence>
<attribute nane="partNunl' type="ipo: SKU' use="required"/>
</ conpl exType>
</ el emrent >
</ sequence>
</ conpl exType>

<si npl eType nane="SKU'>
<restriction base="string">
<pattern value="\d{3}-[A-Z]{2}"/>
</restriction>

</ si npl eType>

</ schema>

The file containing the address constructs is:

Addresses for International Purchase Order schema, address.xsd

<schema t ar get Namespace="htt p://ww. exanpl e. com | PO'
xm ns="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: i po="http://ww. exanpl e. conf | PO' >

<annot at i on>

<docunent ati on xnl ;| ang="en">
Addresses for International Purchase order schenma
Copyri ght 2000 Exanple.com Al rights reserved.
</ docunent ati on>

</ annot ati on>

<conpl exType nane="Addr ess" >

<sequence>

<el enent nanme="nang" type="string"/>
<el enent nanme="street" type="string"/>
<el enent name="city" type="string"/>

</ sequence>
</ conpl exType>

<conpl exType nane="USAddr ess" >
<conpl exCont ent >
<ext ensi on base="i po: Addr ess" >

<seguence>
<el enent name="state" type="ipo: USState"/>
<el enent nanme="zi p" type="positivelnteger"/>

</ sequence>

</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

34

<conpl exType nane="UKAddr ess" >
<conpl exCont ent >
<ext ensi on base="i po: Addr ess" >
<seguence>
<el enent name="postcode" type="ipo: UKPost code"/ >
</ sequence>
<attribute nane="export Code" type="positivelnteger" fixed="1"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<l -- other Address derivations for nore countries -->

<si npl eType nane="USSt at e" >
<restriction base="string">
<enuner ati on val ue="AK"/ >
<enuner ati on val ue="AL"/>
<enuner ati on val ue="AR'/ >
<l-- and soon ... -->
</restriction>

</ si npl eType>

<l-- sinple type definition for UKPostcode -->

</ schema>

The various purchase order and address constructions are now contained in two
schema files, i po. xsd and addr ess. xsd. To include these constructions as
part of the international purchase order schema, in other words to include them in
the international purchase order’s namespace, i po. xsd contains the i ncl ude
element:

<i ncl ude schenaLocation="http://ww. exanpl e. coml schenas/ addr ess. xsd"/ >

The effect of this i ncl ude element is to bring in the definitions and declarations
contained in addr ess. xsd, and make them available as part of the international
purchase order schema target namespace. The one important caveat to using

I ncl ude is that the target namespace of the included components must be the
same as the target namespace of the including schema, in this case

htt p://ww. exanpl e. com | PO. Bringing in definitions and declarations using
the i ncl ude mechanism effectively adds these components to the existing target
namespace. In Section 4.5, we describe a similar mechanism that enables you to
modify certain components when they are brought in.

In our example, we have shown only one including document and one included
document. In practice it is possible to include more than one document using
multiple i ncl ude elements, and documents can include documents that
themselves include other documents. However, nesting documents in this manner
is legal only if all the included parts of the schema are declared with the same
target namespace.

Instance documents that conform to schema whose definitions span multiple
schema documents need only reference the 'topmost’ document and the common
namespace, and it is the responsibility of the processor to gather together all the
definitions specified in the various included documents. In our example above, the
instance document i po. xm (see Section 4.3) references only the common target

35

namespace, htt p: / / www. exanpl e. com | PO, and (by implication) the one
schema file htt p: / / www. exanpl e. com schemas/ i po. xsd. The processor is
responsible for obtaining the schema file addr ess. xsd.

In Section 5.4 we describe how schemas can be used to validate content from
more than one namespace.

4.2 Deriving Types by Extension

To create our address constructs, we start by creating a complex type called

Addr ess in the usual way (see addr ess. xsd). The Addr ess type contains the
basic elements of an address: a name, a street and a city. (Such a definition will
not work for all countries, but it serves the purpose of our example.) From this
starting point we derive two new complex types that contain all the elements of the
original type plus additional elements that are specific to addresses in the US and
the UK. The technique we use here to derive new (complex) address types by
extending an existing type is the same technique we used in in Section 2.5.1,
except that our base type here is a complex type whereas our base type in the
previous section was a simple type.

We define the two new complex types, USAddr ess and UKAddr ess, using the
conpl exType element. In addition, we indicate that the content models of the
new types are complex, i.e. contain elements, by using the conpl exCont ent
element, and we indicate that we are extending the base type Addr ess by the
value of the base attribute on the ext ensi on element.

When a complex type is derived by extension, its effective content model is the
content model of the base type plus the content model specified in the type
derivation. Furthermore, the two content models are treated as two children of a
sequential group. In the case of UKAddr ess, the content model of UKAddr ess is
the content model of Addr ess plus the declarations for a post code element and
an expor t Code attribute. This is like defining the UKAddr ess from scratch as
follows:

Example

<conpl exType nane="UKAddr ess" >
<sequence>
<!-- content nodel of Address -->
<el ement nanme="nane" type="string"/>
<el ement nane="street" type="string"/>
<el ement nanme="city" type="string"/>
<l-- appended el enrent declaration -->

<el enent name="postcode" type="ipo: UKPost code"/ >
</ sequence>

<l-- appended attribute declaration -->
<attribute name="export Code" type="positivelnteger" fixed="1"/>
</ conpl exType>

4.3 Using Derived Types in Instance Documents

In our example scenario, purchase orders are generated in response to customer
orders which may involve shipping and billing addresses in different countries. The

36

international purchase order, i po. xml below, illustrates one such case where
goods are shipped to the UK and the bill is sent to a US address. Clearly it is
better if the schema for international purchase orders does not have to spell out
every possible combination of international addresses for billing and shipping, and
even more so if we can add new complex types of international address simply by
creating new derivations of Addr ess.

XML Schema allows us to define the bi | | To and shi pTo elements as Addr ess
types (see i po. xsd) but to use instances of international addresses in place of
instances of Addr ess. In other words, an instance document whose content
conforms to the UKAddr ess type will be valid if that content appears within the
document at a location where an Addr ess is expected (assuming the UKAddr ess
content itself is valid). To make this feature of XML Schema work, and to identify
exactly which derived type is intended, the derived type must be identified in the
instance document. The type is identified using the xsi : t ype attribute which is
part of the XML Schema instance namespace. In the example, i po. xm , use of
the UKAddr ess and USAddr ess derived types is identified through the values
assigned to the xsi : t ype attributes.

An International Purchase order, ipo.xml

<?xm version="1.0"7?>

<i po: pur chaseOr der
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns:ipo="http://ww. exanpl e. coni | PO'
or der Dat e="1999- 12- 01" >

<shi pTo export Code="1" xsi:type="i po: UKAddr ess" >
<nane>Hel en Zoe</ nanme>
<street>47 Eden Street</street>
<city>Canbri dge</city>
<post code>CB1 1JR</ post code>
</ shi pTo>

<bill To xsi:type="i po: USAddr ess" >
<nane>Robert Sm t h</ nanme>
<street >8 Oak Avenue</street>
<city>A d Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>

</bill To>

<items>
<item part Nune"833- AA" >
<pr oduct Nane>Lapi s neckl ace</ product Nane>
<quantity>l</quantity>
<USPri ce>99. 95</ USPri ce>
<i po: comment >\Want this for the holidays!</ipo: coment >
<shi pDat €>1999- 12- 05</ shi pDat e>
</[itemp
</items>
</i po: pur chaseOr der >

In Section 4.8 we describe how to prevent derived types from being used in this
sort of substitution.

4.4 Deriving Complex Types by Restriction

In addition to deriving new complex types by extending content models, it is

37

possible to derive new types by restricting the content models of existing types.
Restriction of complex types is conceptually the same as restriction of simple
types, except that the restriction of complex types involves a type’s declarations
rather than the acceptable range of a simple type’s values. A complex type
derived by restriction is very similar to its base type, except that its declarations
are more limited than the corresponding declarations in the base type. In fact, the
values represented by the new type are a subset of the values represented by the
base type (as is the case with restriction of simple types). In other words, an
application prepared for the values of the base type would not be surprised by the
values of the restricted type.

For example, suppose we want to update our definition of the list of i t ens in an
international purchase order so that it must contain at /least one i t emon order;
the schema shown in i po. xsd allows an i t ens element to appear without any
child i t emelements. To create our new Confi r medl t ens type, we define the
new type in the usual way, indicate that it is derived by restriction from the base
type | t ens, and provide a new (more restrictive) value for the minimum number
of i t emelement occurrences. Notice that types derived by restriction must repeat
all the components of the base type definition that are to be included in the
derived type:

Deriving Confirmedltems by Restriction from Items

<conpl exType nane="Confirnmnmedltens">
<conpl exCont ent >
<restriction base="ipo:ltens">
<sequence>

<l-- itemelenent is different than in ltens -->
<el enent name="itenl m nCccurs="1" maxCccur s="unbounded" >

<!-- renminder of definitionis sane as Itens -->
<conpl exType>
<sequence>
<el enent name="product Name" type="string"/>
<el ement nanme="quantity">
<si npl eType>
<restriction base="positivelnteger">
<maxExcl usi ve val ue="100"/>
</restriction>
</ si mpl eType>
</ el ement >

<el ement nanme="USPri ce" type="decimal "/ >
<el ement ref="ipo:coment" m nCccurs="0"/>
<el ement name="shi pDat e" type="date" m nCccurs="0"/>

</ sequence>

<attribute nane="partNum' type="ipo: SKU' use="required"/>
</ conpl exType>
</ el emrent >

</ sequence>

</restriction>
</ conpl exCont ent >
</ conpl exType>

This change, requiring at least one child element rather than allowing zero or more
child elements, narrows the allowable number of child elements from a minimum
of 0 to a minimum of 1. Note that all Conf i r medl t ens type elements will also be
acceptable as | t emtype elements.

38

To further illustrate restriction, Table 3 shows several examples of how element
and attribute declarations within type definitions may be restricted (the table
shows element syntax although the first three examples are equally valid attribute
restrictions).

|Tab|e 3. Restriction Examples
| Base || Restriction || Notes
setting a default value where none was

default="1 previously given
fixed="100" setting a fixed value where none was
- previously given
s ||SPECIfying a type where none was previously
type="string given
(minOccurs, (minOccurs,

maxOccurs) maxOccurs)

exclusion of an optional component; this may
also be accomplished by omitting the
component’s declaration from the restricted
type definition

O, 1) 0, 0)

| (0, unbounded) || (0, 0) (0, 37) |
(1,8)(2,9) (4,

(1,9)

7) (3. 3)
(1,12) 3,
(1, unbounded) || unbounded) (6,
6)
| (1,1) | - ||lcannot restrict minOccurs or maxOccurs

4.5 Redefining Types & Groups

In Section 4.1 we described how to include definitions and declarations obtained
from external schema files having the same target namespace. The i ncl ude
mechanism enables you to use externally created schema components "as-is",
that is, without any modification. We have just described how to derive new types
by extension and by restriction, and the r edef i ne mechanism we describe here
enables you to redefine simple and complex types, groups, and attribute groups
that are obtained from external schema files. Like the i ncl ude mechanism,

r edef i ne requires the external components to be in the same target namespace
as the redefining schema, although external components from schemas that have
no namespace can also be redefined. In the latter cases, the redefined
components become part of the redefining schema’s target namespace.

To illustrate the r edef i ne mechanism, we use it instead of the i ncl ude
mechanism in the International Purchase Order schema, i po. xsd, and we use it
to modify the definition of the complex type Addr ess contained in addr ess. xsd:

Using redefine in the International Purchase Order
<schema t ar get Namespace="htt p: //ww. exanpl e. com | PO'

39

xm ns="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: i po="http://ww. exanpl e. conf | PO' >

<l-- bring in address constructs -->
<r edefi ne
schemalLocati on="http: //ww. exanpl e. com schermas/ addr ess. xsd" >

<!-- redefinition of Address -->
<conpl exType nane="Addr ess">
<conpl exCont ent >
<ext ensi on base="i po: Addr ess" >
<sequence>
<el ement name="country" type="string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

</ redefine>
<l-- etc. -->

</ schema>

The r edef i ne element acts very much like the i ncl ude element as it includes
all the declarations and definitions from the addr ess. xsd file. The complex type
definition of Addr ess uses the familiar extension syntax to add a country
element to the definition of Addr ess. However, note that the base type is also
Addr ess. Outside of the r edef i ne element, any such attempt to define a
complex type with the same name (and in the same namespace) as the base from
which it is being derived would cause an error. But in this case, there is no error,
and the extended definition of Addr ess becomes the only definition of Addr ess.

Now that Addr ess has been redefined, the extension applies to all schema
components that make use of Addr ess. For example, addr ess. xsd contains
definitions of international address types that are derived from Addr ess. These
derivations reflect the redefined Addr ess type, as shown in the following snippet:

Snippet of ipo.xml using Redefined Address

<shi pTo export Code="1" xsi:type="i po: UKAddr ess" >

<name>Hel en Zoe</ nane>

<street>47 Eden Street</street>

<ci ty>Canbri dge</city>

<l-- country was added to Address which is base type of UKAddress -->
<country>Uni ted Ki ngdonx/country>

<l-- postcode was added as part of UKAddress -->

<post code>CB1 1JR</ post code>

</ shi pTo>

Our example has been carefully constructed so that the redefined Addr ess type
does not conflict in any way with the types that are derived from the original

Addr ess definition. But note that it would be very easy to create a conflict. For
example, if the international address type derivations had extended Addr ess by
adding a count r y element, then the redefinition of Addr ess would be adding an
element of the same name to the content model of Addr ess. Itis illegal to have
two elements of the same name (and in the same target namespace) but different

40

types in a content model, and so the attempt to redefine Addr ess would cause an
error. In general, r edef i ne does not protect you from such errors, and it should
be used cautiously.

4.6 Substitution Groups

XML Schema provides a mechanism, called substitution groups, that allows
elements to be substituted for other elements. More specifically, elements can be
assigned to a special group of elements that are said to be substitutable for a
particular named element called the head element. (Note that the head element
must be declared as a global element.) To illustrate, we declare two elements
called cust onmer Corment and shi pConment and assign them to a substitution
group whose head element is corment , and so cust oner Comrent and

shi pComrent can be used anyplace that we are able to use conment . Elements
in a substitution group must have the same type as the head element, or they can
have a type that has been derived from the head element’s type. To declare these
two new elements, and to make them substitutable for the comrent element, we
use the following syntax:

Declaring Elements Substitutable for comment

<el enent nane="shi pComent" type="string"
substituti onG oup="i po: comment "/ >

<el enent nane="custonmer Comment" type="string"
substituti onG oup="i po: comment"/>

When these declarations are added to the international purchase order schema,
shi pComrent and cust omrer Comment can be substituted for conment in the
instance document, for example:

Snippet of ipo.xml with Substituted Elements

<items>
<i tem part Nun¥"833- AA" >
<pr oduct Nane>Lapi s neckl ace</ product Nane>
<quantity>1</quantity>
<USPri ce>99. 95</ USPri ce>
<i po: shi pComent >
Use gold wap if possible
</'i po: shi pConment >
<i po: cust oner Corment >
want this for the holidays!
</i po: cust omer Conmrent >
<shi pDat €>1999- 12- 05</ shi pDat e>
</itenpr
</items>

Note that when an instance document contains element substitutions whose types
are derived from those of their head elements, it is not necessary to identify the
derived types using the xsi : t ype construction that we described in Section 4.3.

The existence of a substitution group does not require any of the elements in that
class to be used, nor does it preclude use of the head element. It simply provides
a mechanism for allowing elements to be used interchangeably.

41

4.7 Abstract Elements and Types

XML Schema provides a mechanism to force substitution for a particular element
or type. When an element or type is declared to be "abstract", it cannot be used in
an instance document. When an element is declared to be abstract, a member of
that element’s substitution group must appear in the instance document. When an
element’s corresponding type definition is declared as abstract, all instances of
that element must use xsi : t ype to indicate a derived type that is not abstract.

In the substitution group example we described in Section 4.6, it would be useful
to specifically disallow use of the conmrent element so that instances must make
use of the cust oner Commrent and shi pComment elements. To declare the
coment element abstract, we modify its original declaration in the international
purchase order schema, i po. xsd, as follows:

<el enent nane="coment" type="string" abstract="true"/>

With comment declared as abstract, instances of international purchase orders
are now only valid if they contain cust oner Comrent and shi pComment
elements.

Declaring an element as abstract requires the use of a substitution group.
Declaring a type as abstract simply requires the use of a type derived from it (and
identified by the xsi : t ype attribute) in the instance document. Consider the
following schema definition:

Schema for Vehicles

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma"
targetNamespace="http://cars.example.com/schema"
xmins:target="http://cars.example.com/schema">

<complexType name="Vehicle" abstract="true"/>

<complexType name="Car">
<complexContent>

<extension base="target:Vehicle"/>
</complexContent>
</complexType>

<complexType name="Plane">
<complexContent>

<extension base="target:Vehicle"/>
</complexContent>
</complexType>

<element name="transport" type="target:Vehicle"/>
</schema>

The t ransport element is not abstract, therefore it can appear in instance
documents. However, because its type definition is abstract, it may never appear
in an instance document without an xsi : t ype attribute that refers to a derived
type. That means the following is not schema-valid:

<transport xmlns="http://cars.example.com/schema"/>

42

because the t ransport element’s type is abstract. However, the following is
schema-valid:

<transport xm ns="http://cars.exanpl e.com schem"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi:type="Car"/>

because it uses a non-abstract type that is substitutable for Vehi cl e.

4.8 Controlling the Creation & Use of Derived Types

So far, we have been able to derive new types and use them in instance
documents without any restraints. In reality, schema authors will sometimes want
to control derivations of particular types, and the use of derived types in instances.

XML Schema provides a couple of mechanisms that control the derivation of
types. One of these mechanisms allows the schema author to specify that for a
particular complex type, new types may not be derived from it, either (a) by
restriction, (b) by extension, or (c) at all. To illustrate, suppose we want to prevent
any derivation of the Addr ess type by restriction because we intend for it only to
be used as the base for extended types such as USAddr ess and UKAddr ess. To
prevent any such derivations, we slightly modify the original definition of Addr ess
as follows:

Preventing Derivations by Restriction of Address
<conpl exType nane="Address" final="restriction">

<sequence>

<el ement nane="nane" type="string"/>
<el ement nane="street" type="string"/>
<el ement nane="city" type="string"/>

</ sequence>
</ conpl exType>

Therestriction value of the fi nal attribute prevents derivations by
restriction. Preventing derivations at all, or by extension, are indicated by the
values #al | and ext ensi on respectively. Moreover, there exists an optional
final Def aul t attribute on the schena element whose value can be one of the
values allowed for the f i nal attribute. The effect of specifying the

fi nal Def aul t attribute is equivalent to specifying a f i nal attribute on every
type definition and element declaration in the schema.

Another type-derivation mechanism controls which facets can be applied in the
derivation of a new simple type. When a simple type is defined, the fi xed
attribute may be applied to any of its facets to prevent a derivation of that type
from modifying the value of the fixed facets. For example, we can define a
Post code simple type as:

Preventing Changes to Simple Type Facets

<si npl eType nane="Post code" >
<restriction base="string">
<l ength value="7" fixed="true"/>
</restriction>

43

</ si npl eType>

Once this simple type has been defined, we can derive a new postal code type in
which we apply a facet not fixed in the base definition, for example:

Legal Derivation from Postcode

<si npl eType nane="UKPost code" >
<restriction base="i po: Post code">
<pattern value="[A-Z]{2}\d\s\d[A-Z]{2}"/ >
</restriction>
</ si npl eType>

However, we cannot derive a new postal code in which we re-apply any facet that
was fixed in the base definition:

lllegal Derivation from Postcode

<si npl eType nane="UKPost code" >
<restriction base="i po: Post code">
<pattern value="[A-Z]{2}\d\d[A-Z] {2}"/ >
<l-- illegal attenpt to nodify facet fixed in base type -->
<l ength val ue="6" fixed="true"/>
</restriction>
</ si npl eType>

In addition to the mechanisms that control type derivations, XML Schema provides
a mechanism that controls which derivations and substitution groups may be used
in instance documents. In Section 4.3, we described how the derived types,
USAddr ess and UKAddr ess, could be used by the shi pTo and bi | | To
elements in instance documents. These derived types can replace the content
model provided by the Addr ess type because they are derived from the Addr ess
type. However, replacement by derived types can be controlled using the bl ock
attribute in a type definition. For example, if we want to block any derivation-by-
restriction from being used in place of Addr ess (perhaps for the same reason we
defined Addr ess withfi nal ="restri cti on"), we can modify the original
definition of Addr ess as follows:

Preventing Derivations by Restriction of Address in the Instance
<conpl exType nane="Address" bl ock="restriction">

<sequence>

<el enent nane="nang" type="string"/>
<el enent nane="street" type="string"/>
<el enent nanme="city" type="string"/>

</ sequence>
</ conpl exType>

Therestriction value onthe bl ock attribute prevents derivations-by-
restriction from replacing Addr ess in an instance. However, it would not prevent
UKAddr ess and USAddr ess from replacing Addr ess because they were derived
by extension. Preventing replacement by derivations at all, or by derivations-by-
extension, are indicated by the values #al | and ext ensi on respectively. As with
final , there exists an optional bl ockDef aul t attribute on the schena element
whose value can be one of the values allowed for the bl ock attribute. The effect
of specifying the bl ockDef aul t attribute is equivalent to specifying a bl ock
attribute on every type definition and element declaration in the schema.

44

5. Advanced Concepts lll: The Quarterly Report

The home-products ordering and billing application can generate ad-hoc reports
that summarize how many of which types of products have been billed on a per
region basis. An example of such a report, one that covers the fourth quarter of
1999, is shown in 4Q99. xm .

Notice that in this section we use qualified elements in the schema, and default
namespaces where possible in the instances.

Quarterly Report, 4Q99.xml

<pur chaseReport
xm ns="http://ww. exanpl e. com Report"
peri od="P3M peri odEndi ng="1999-12-31">

<r egi ons>
<zi p code="95819" >
<part nunber="872- AA" quantity="1"
<part nunber="926- AA" quantity="
<part nunber="833- AA" quantity
<part nunber ="455-BX" quantity
</ zi p>
<zi p code="63143">
<part nunber ="455-BX" quantity="4"/>
</ zi p>
</regi ons>

<parts>

<part nunber ="872- AA" >Lawnnower </ part >
<part nunber ="926- AA">Baby Mbnitor</part>
<part nunber ="833- AA">Lapi s Neckl ace</part >
<part nunber ="455-BX">St urdy Shel ves</part >
</ parts>

</ pur chaseReport >

The report lists, by number and quantity, the parts billed to various zip codes, and
it provides a description of each part mentioned. In summarizing the billing data,
the intention of the report is clear and the data is unambiguous because a number
of constraints are in effect. For example, each zip code appears only once
(uniqueness constraint). Similarly, the description of every billed part appears only
once although parts may be billed to several zip codes (referential constraint), see
for example part number 455- BX. In the following sections, we’ll see how to
specify these constraints using XML Schema.

The Report Schema, report.xsd

<schema t ar get Namespace="htt p: //ww. exanpl e. conl Report"
xm ns="http://ww. w3. org/ 2001/ XM_.Schenma"
xm ns:r="http://ww. exanpl e. conf Report"
xm ns: xi po="http://ww. exanpl e. coni | PO'
el ement For nDef aul t =" qual i fi ed">

<l-- for SKU -->
<i nport nanmespace="http://ww. exanpl e. conf | PO'/ >

<annot ati on>

<docurent ati on xmni : | ang="en">
Report schema for Exanpl e.com

45

Copyright 2000 Exanple.com Al rights reserved.
</ docunent ati on>
</ annot ati on>

<el enent nane="pur chaseReport">
<conpl exType>
<seguence>
<el enent name="regi ons" type="r: Regi onsType">
<keyref nanme="dunmy2" refer="r:pNunKey">
<sel ector xpath="r:zip/r:part"/>
<field xpath="@unber"/>
</ keyref >
</ el ement >

<el enent name="parts" type="r: PartsType"/>
</ sequence>
<attribute nanme="period" type="duration"/>
<attribute nane="peri odEndi ng" type="date"/>
</ conpl exType>

<uni que nane="dunmyl">

<sel ector xpath="r:regions/r:zip"/>
<field xpat h="@ode"/>

</ uni que>

<key nane="pNunKey" >
<sel ector xpath="r:parts/r:part"/>
<field xpath="@unber"/>

</ key>

</ el ement >

<conpl exType nane="Regi onsType" >
<sequence>
<el enent name="zi p" maxCOccur s="unbounded" >
<conpl exType>
<sequence>
<el enent name="part" maxCccur s="unbounded" >
<conpl exType>
<conpl exCont ent >
<restriction base="anyType">
<attribute nane="nunber" type="xi po: SKU"'/ >
<attribute nane="quantity" type="positivelnteger"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
</ el ement >
</ sequence>
<attribute nane="code" type="positivelnteger"/>
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

<conpl exType nane="PartsType">
<sequence>
<el enent nanme="part" nmaxCccur s="unbounded" >
<conpl exType>
<si npl eCont ent >
<ext ensi on base="string">
<attribute nane="nunber" type="xi po: SKU"/ >
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

46

</ schema>

5.1 Specifying Uniqueness

XML Schema enables us to indicate that any attribute or element value must be
unique within a certain scope. To indicate that one particular attribute or element
value is unique, we use the uni que element first to "select” a set of elements,
and then to identify the attribute or element "field" relative to each selected
element that has to be unique within the scope of the set of selected elements. In
the case of our report schema, r eport . xsd, the sel ect or element’s xpat h
attribute contains an XPath expression, r egi ons/ zi p, that selects a list of all the
zi p elements in a report instance. Likewise, the f i el d element’s xpat h attribute
contains a second XPath expression, @ode, that specifies that the code attribute
values of those elements must be unique. Note that the XPath expressions limit
the scope of what must be unique. The report might contain another code
attribute, but its value does not have to be unique because it lies outside the
scope defined by the XPath expressions. Also note that the XPath expressions
you can use in the xpat h attribute are limited to a subset of the full XPath
language defined in XML Path Language 1.0.

We can also indicate combinations of fields that must be unique. To illustrate,
suppose we can relax the constraint that zip codes may only be listed once,
although we still want to enforce the constraint that any product is listed only once
within a given zip code. We could achieve such a constraint by specifying that the
combination of zip code and product number must be unique. From the report
document, 4(09. xni , the combined values of zip code and nunber would be:
{95819 872- AA}, {95819 926- AA}, {95819 833- AA}, {95819 455- BX}, and
{63143 455- BX}. Clearly, these combinations do not distinguish between zip
code and nunber combinations derived from single or multiple listings of any
particular zip, but the combinations would unambiguously represent a product
listed more than once within a single zip. In other words, a schema processor
could detect violations of the uniqueness constraint.

To define combinations of values, we simply add f i el d elements to identify all
the values involved. So, to add the part number value to our existing definition, we
add anew f i el d element whose xpat h attribute value, part/ @unber,
identifies the nunber attribute of part elements that are children of the zi p
elements identified by r egi ons/ zi p:

A Unique Composed Value

<uni que nane="dunmyl">

<sel ector xpath="r:regions/r:zip"/>
<field xpat h="@ode"/ >

<field xpat h="r: part/ @unber"/ >
</ uni que>

5.2 Defining Keys & their References

In the 1999 quarterly report, the description of every billed part appears only once.
We could enforce this constraint using uni que, however, we also want to ensure
that every part-quantity element listed under a zip code has a corresponding part
description. We enforce the constraint using the key and keyr ef elements. The

47

report schema, r epor t . xsd, shows that the key and keyr ef constructions are
applied using almost the same syntax as uni que. The key element applies to the
nunber attribute value of part elements that are children of the part s element.
This declaration of nunber as a key means that its value must be unique and
cannot be set to nil (i.e. is not nillable), and the name that is associated with the
key, pNunKey, makes the key referenceable from elsewhere.

To ensure that the part-quantity elements have corresponding part descriptions,
we say that the nunber attribute (<fi el d>@unber </ fi el d>) of those
elements (<sel ect or >zi p/ part </ sel ect or >) must reference the pNunKey
key. This declaration of nunber as a keyr ef does not mean that its value must
be unique, but it does mean there must exist a pNunKey with the same value.

As you may have figured out by analogy with uni que, it is possible to define
combinations of key and keyr ef values. Using this mechanism, we could go
beyond simply requiring the product numbers to be equal, and define a
combination of values that must be equal. Such values may involve combinations
of multiple value types (st ri ng, i nt eger, dat e, etc.), provided that the order
and type of the f i el d element references is the same in both the key and

keyr ef definitions.

5.3 XML Schema Constraints vs. XML 1.0 ID Attributes

XML 1.0 provides a mechanism for ensuring uniqueness using the ID attribute and
its associated attributes IDREF and IDREFS. This mechanism is also provided in
XML Schema through the | D, | DREF, and | DREFS simple types which can be
used for declaring XML 1.0-style attributes. XML Schema also introduces new
mechanisms that are more flexible and powerful. For example, XML Schema’s
mechanisms can be applied to any element and attribute content, regardless of its
type. In contrast, ID is a type of attribute and so it cannot be applied to attributes,
elements or their content. Furthermore, Schema enables you to specify the scope
within which uniqueness applies whereas the scope of an ID is fixed to be the
whole document. Finally, Schema enables you to create keys or a keyr ef from
combinations of element and attribute content whereas ID has no such facility.

5.4 Importing Types

The report schema, r eport . xsd, makes use of the simple type xi po: SKU that is
defined in another schema, and in another target namespace. Recall that we used
I ncl ude so that the schema in i po. xsd could make use of definitions and
declarations from addr ess. xsd. We cannot use i ncl ude here because it can
only pull in definitions and declarations from a schema whose target namespace is
the same as the including schema’s target namespace. Hence, the i ncl ude
element does not identify a namespace (although it does require a

schemaLocat i on). The import mechanism that we describe in this section is an
important mechanism that enables schema components from different target
namespaces to be used together, and hence enables the schema validation of
instance content defined across multiple namespaces.

To import the type SKU and use it in the report schema, we identify the
namespace in which SKU is defined, and associate that namespace with a prefix

48

for use in the report schema. Concretely, we use the i nport element to identify
SKU's target namespace, htt p: / / ww. exanpl e. com | PO, and we associate
the namespace with the prefix xi po using a standard namespace declaration.
The simple type SKU, defined in the namespace

htt p://ww. exanpl e. com’ | PO, may then be referenced as xi po: SKUin any
of the report schema’s definitions and declarations.

In our example, we imported one simple type from one external namespace, and
used it for declaring attributes. XML Schema in fact permits multiple schema
components to be imported, from multiple namespaces, and they can be referred
to in both definitions and declarations. For example in r epor t . xsd we could
additionally reuse the conmrent element declared in i po. xsd by referencing that
element in a declaration:

<el enent ref="xipo: comment"/>

Note however, that we cannot reuse the shi pTo element from po. xsd, and the
following is not legal because only global schema components can be imported:

<el enent ref="xipo: shi pTo"/>

Ini po. xsd, conment is declared as a global element, in other words it is
declared as an element of the schena. In contrast, shi pTo is declared locally, in
other words it is an element declared inside a complex type definition, specifically
the Pur chaseOr der Type type.

Complex types can also be imported, and they can be used as the base types for
deriving new types. Only named complex types can be imported; local,
anonymously defined types cannot. Suppose we want to include in our reports the
name of an analyst, along with contact information. We can reuse the (globally
defined) complex type USAddr ess from addr ess. xsd, and extend it to define a
new type called Anal yst by adding the new elements phone and ensi | :

Defining Analyst by Extending USAddress

<conpl exType nane="Anal yst">
<conpl exCont ent >
<ext ensi on base="xi po: USAddr ess" >

<seguence>
<el enent nanme="phone" type="string"/>
<el enent nanme="email" type="string"/>

</ sequence>

</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

Using this new type we declare an element called anal yst as part of the

pur chaseReport element declaration (declarations not shown) in the report
schema. Then, the following instance document would conform to the modified
report schema:

Instance Document Conforming to Report Schema with Analyst Type
<pur chaseReport

49

xm ns="http://ww. exanpl e. com Report"
peri od="P3M peri odEndi ng="1999-12-31">
<l-- regions and parts elenents omtted -->
<anal yst >
<nanme>Wendy Uhr o</ nane>
<street>10 Corporate Towers</street>
<city>San Jose</city>
<st at e>CA</ st at e>
<zi p>95113</ zi p>
<phone>408- 271- 3366</ phone>
<enai | >uhr o@xanpl e. conx/ emai | >
</ anal yst >
</ pur chaseReport >

When schema components are imported from multiple namespaces, each
namespace must be identified with a separate i npor t element. The i npor t
elements themselves must appear as the first children of the schena element.
Furthermore, each namespace must be associated with a prefix, using a standard
namespace declaration, and that prefix is used to qualify references to any
schema components belonging to that namespace. Finally, i nport elements
optionally contain a schenmalLocat i on attribute to help locate resources
associated with the namespaces. We discuss the schenmalLocat i on attribute in
more detail in a later section.

5.4.1 Type Libraries

As XML schemas become more widespread, schema authors will want to create
simple and complex types that can be shared and used as building blocks for
creating new schemas. XML Schemas already provides types that play this role, in
particular, the types described in the Simple Types appendix and in an

introductory type library.

Schema authors will undoubtedly want to create their own libraries of types to
represent currency, units of measurement, business addresses, and so on. Each
library might consist of a schema containing one or more definitions, for example,
a schema containing a currency type:

Example Currency Type in Type Library

<schema t ar get Nanmespace="htt p: // ww. exanpl e. conl Currency"
xm ns: c="http://ww. exanpl e. com Currency"
xm ns="http://ww. w3. org/ 2001/ XM_Schema" >

<annot at i on>
<docunent ation xm : | ang="en">
Definition of Currency type based on | SO 4217
</ docunent at i on>
</ annot at i on>

<conpl exType nane="Currency">
<si npl eCont ent >
<ext ensi on base="deci nal ">
<attribute nane="nane">
<si mpl eType>
<restriction base="string">

<enurer ati on val ue="AED'>
<annot ati on>
<docunent ation xm : | ang="en">
United Arab Emirates: Dirham (1 Dirham = 100 Fils)

50

</ documnent ati on>
</ annot ati on>
</ enuner ati on>

<enuner ati on val ue="AFA">

<annot at i on>
<docunentati on xm : | ang="en">
Af ghani stan: Afghani (1 Afghani = 100 Pul s)
</ documnent ati on>

</ annot ati on>

</ enuner ati on>

<enuner ati on val ue="ALL">
<annot at i on>
<docunentati on xnm : |l ang="en">
Al bania, Lek (1 Lek = 100 Q ndarka)
</ docunent ati on>
</ annot ati on>
</ enuner ati on>

<!-- and other currencies -->

</restriction>
</ si npl eType>
</attribute>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

</ schema>

An example of an element appearing in an instance and having this type:

<convert From nane=" AFA">199. 37</ convert Fronp

Once we have defined the currency type, we can make it available for re-use in
other schemas through the i npor t mechanism just described.

5.5 Any Element, Any Attribute

In previous sections we have seen several mechanisms for extending the content
models of complex types. For example, a mixed content model can contain
arbitrary character data in addition to elements, and for example, a content model
can contain elements whose types are imported from external namespaces.
However, these mechanisms provide very broad and very narrow controls
respectively. The purpose of this section is to describe a flexible mechanism that
enables content models to be extended by any elements and attributes belonging
to specified namespaces.

To illustrate, consider a version of the quarterly report, 4Q29ht ml . xm , in which
we have embedded an HTML representation of the XML parts data. The HTML
content appears as the content of the element ht ml Exanpl e, and the default
namespace is changed on the outermost HTML element (t abl e) so that all the
HTML elements belong to the HTML namespace,

http://ww. w3. org/ 1999/ xht m :

Quarterly Report with HTML, 4Q99html.xml
<pur chaseReport

51

xm ns="http://ww. exanpl e. com Report"
peri od="P3M peri odEndi ng="1999-12-31">

<r egi ons>
<l-- part sales listed by zip code, data from4@9.xm -->
</regi ons>

<parts>
<l-- part descriptions from4@9.xm -->
</ parts>

<ht ml Exanpl e>
<tabl e xm ns="http://ww.w3.org/ 1999/ xhtm "
border="0" w dt h="100% >
<tr>
<th align="left">Zi p Code</th>
<th align="left">Part Nunber</th>
<th align="left">Quantity</th>
</[tr>
<tr><td>95819</td><td> </td><td> </td></tr>
<tr><td> </td><td>872- AA</ td><td>1</td></tr>
<tr><td> </td><td>926- AA</ td><td>1</td></tr>
<tr><td> </td><td>833- AA</ td><td>1</td></tr>
<tr><td> </td><t d>455-BX</td><td>1</td></tr>
<tr><td>63143</td><td> </td><td> </td></tr>
<tr><td> </td><t d>455-BX</td><td>4</td></tr>
</t abl e>
</ ht M Exanpl e>

</ pur chaseReport >

To permit the appearance of HTML in the instance document we modify the report
schema by declaring a new element ht ml Exanpl e whose content is defined by
the any element. In general, an any element specifies that any well-formed XML
IS permissible in a type’s content model. In the example, we require the XML to
belong to the namespace htt p: // www. W3. or g/ 1999/ xht m , in other words, it
should be HTML. The example also requires there to be at least one element
present from this namespace, as indicated by the values of m nCccur s and
maxQccur s:

Modification to purchaseReport Declaration to Allow HTML in Instance

<el ement nane="pur chaseReport">
<conpl exType>

<sequence>
<el ement nane="regi ons" type="r:Regi onsType"/>
<el ement nane="parts" type="r: PartsType"/>

<el ement nane="ht nl Exanpl e" >
<conpl exType>
<sequence>
<any nanespace="http://ww. w3. org/ 1999/ xhtm "
m nQccur s="1" maxQccur s="unbounded"
pr ocessCont ent s="ski p"/ >
</ sequence>
</ conpl exType>
</ el emrent >
</ sequence>
<attribute nane="period" type="duration"/>
<attribute nane="peri odEndi ng" type="date"/>
</ conpl exType>
</ el ement >

The modification permits some well-formed XML belonging to the namespace

52

http://ww. w3. or g/ 1999/ xht m to appear inside the ht Ml Exanpl e
element. Therefore 4QQ9ht m . xm is permissible because there is one element
which (with its children) is well-formed, the element appears inside the appropriate
element (ht M Exanpl e), and the instance document asserts that the element
and its content belongs to the required namespace. However, the HTML may not
actually be valid because nothing in 4QQ9ht ml . xm by itself can provide that
guarantee. If such a guarantee is required, the value of the pr ocessCont ent s
attribute should be setto st ri ct (the default value). In this case, an XML
processor is obliged to obtain the schema associated with the required
namespace, and validate the HTML appearing within the ht ml Exanpl e element.

In another example, we define a t ext type which is similar to the text type defined
in XML Schema’s introductory type library (see also Section 5.4.1), and is suitable
for internationalized human-readable text. The text type allows an unrestricted
mixture of character content and element content from any namespace, for
example Ruby annotations, along with an optional xmi : | ang attribute. The | ax
value of the pr ocessCont ent s attribute instructs an XML processor to validate
the element content on a can-do basis: It will validate elements and attributes for
which it can obtain schema information, but it will not signal errors for those it
cannot obtain any schema information.

Text Type

<xsd: conpl exType name="text">
<xsd: conpl exCont ent m xed="true">
<xsd:restriction base="xsd: anyType">
<xsd: sequence>
<xsd: any processContents="1lax" minCccurs="0" maxCccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute ref="xm:lang"/>
</xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Namespaces may be used to permit and forbid element content in various ways
depending upon the value of the nanespace attribute, as shown in Table 4:

[Table 4. Namespace Attribute in Any |

| Value of Namespace Attribute || Allowable Element Content |
o Any well-formed XML from any hamespace
y (default)
slocal Any well-formed XML that is not qualified, i.e.
not declared to be in a namespace
Any well-formed XML that is not from the
##other . ,
target namespace of the type being defined
Any well-formed XML belonging to any
"http://www.w3.0rg/1999/xhtml namespace in the (whitespace separated)
##targetNamespace" list; ##targetNamespace is shorthand for the
target namespace of the type being defined

In addition to the any element which enables element content according to
namespaces, there is a corresponding anyAt t r i but e element which enables

53

attributes to appear in elements. For example, we can permit any HTML attribute
to appear as part of the ht m Exanpl e element by adding anyAttri but e to its
declaration:

Modification to htmlExample Declaration to Allow HTML Attributes

<el ement nane="ht m Exanpl e" >
<conpl exType>
<sequence>
<any nanespace="http://ww. w3. org/ 1999/ xht m "
nm nCccurs="1" maxCccur s="unbounded"
processCont ent s="ski p"/ >
</ sequence>
<anyAttri bute nanespace="http://ww. wW3. org/ 1999/ xhtm "/ >
</ conpl exType>
</ el ement >

This declaration permits an HTML attribute, say hr ef , to appear in the
ht mM Exanpl e element. For example:

An HTML attribute in the htmlExample Element

<ht M Exanpl e xm ns: h="http://ww. w3. or g/ 1999/ xht m "
h: href="http://ww. exanpl e. conf reports/4Q9. htm ">
<l-- HTML markup here -->
</ ht m Exanpl e>

The nanespace attribute in an anyAt t ri but e element can be set to any of the
values listed in Table 4 for the any element, and anyAt t ri but e can be specified
with a pr ocessCont ent s attribute. In contrast to an any element,

anyAt t ri but e cannot constrain the number of attributes that may appear in an
element.

5.6 schemalocation

XML Schema uses the schenalLocat i on and xsi : schenmalLocat i on attributes
in three circumstances.

1. In an instance document, the attribute xsi : schenalLocat i on provides hints
from the author to a processor regarding the location of schema documents. The
author warrants that these schema documents are relevant to checking the validity
of the document content, on a namespace by namespace basis. For example, we
can indicate the location of the Report schema to a processor of the Quarterly
Report:

Using schemalocation in the Quarterly Report, 4Q99html.xml

<pur chaseReport
xm ns="http://ww. exanpl e. com Report"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. exanpl e. conf Report
htt p: // ww. exanpl e. com Report. xsd"
peri od="P3M peri odEndi ng="1999-12-31">

<l-- etc. -->

54

</ pur chaseReport >

The schemalocat i on attribute contains pairs of values: The first member of
each pair is the namespace for which the second member is the hint describing
where to find to an appropriate schema document. The presence of these hints
does not require the processor to obtain or use the cited schema documents, and
the processor is free to use other schemas obtained by any suitable means, or to
use no schema at all.

A schema is not required to have a namespace (see Section 3.4) and so there is a
noNanespaceSchenalLocat i on attribute which is used to provide hints for the
locations of schema documents that do not have target namespaces.

2. In a schema, the i ncl ude element has a required schemalLocat i on attribute,
and it contains a URI reference which must identify a schema document. The
effect is to compose a final effective schema by merging the declarations and
definitions of the including and the included schemas. For example, in Section 4,
the type definitions of Addr ess, USAddr ess, UKAddr ess, USSt at e (along with
their attribute and local element declarations) from addr ess. xsd were added to
the element declarations of pur chaseOr der and conment , and the type
definitions of Pur chaseOr der Type, | t ens and SKU (along with their attribute
and local element declarations) from i po. xsd to create a single schema.

3. Also in a schema, the i nport element has optional nanespace and
schemalLocat i on attributes. If present, the schemalLocat i on attribute is
understood in a way which parallels the interpretation of xsi : schenmalLocat i on
in (1). Specifically, it provides a hint from the author to a processor regarding the
location of a schema document that the author warrants supplies the required
components for the namespace identified by the nanespace attribute. To import
components that are not in any target namespace, the i nport element is used
without a nanespace attribute (and with or without a schenalLocat i on attribute).
References to components imported in this manner are unqualified.

Note that the schenalLocat i on is only a hint and some processors and
applications will have reasons to not use it. For example, an HTML editor may
have a built-in HTML schema.

5.7 Conformance

An instance document may be processed against a schema to verify whether the
rules specified in the schema are honored in the instance. Typically, such
processing actually does two things, (1) it checks for conformance to the rules, a
process called schema validation, and (2) it adds supplementary information that
is not immediately present in the instance, such as types and default values,
called infoset contributions.

The author of an instance document, such as a particular purchase order, may
claim, in the instance itself, that it conforms to the rules in a particular schema.
The author does this using the schenalLocat i on attribute discussed above. But
regardless of whether a schenmalLocat i on attribute is present, an application is
free to process the document against any schema. For example, a purchasing
application may have the policy of always using a certain purchase order schema,

55

regardless of any schenmalLocat i on values.

Conformance checking can be thought of as proceeding in steps, first checking
that the root element of the document instance has the right contents, then
checking that each subelement conforms to its description in a schema, and so on
until the entire document is verified. Processors are required to report what
checking has been carried out.

To check an element for conformance, the processor first locates the declaration
for the element in a schema, and then checks that the t ar get Nanespace
attribute in the schema matches the actual namespace URI of the element.
Alternatively, it may determine that the schema does not have a

t ar get Nanespace attribute and the instance element is not namespace-
qualified.

Supposing the namespaces match, the processor then examines the type of the
element, either as given by the declaration in the schema, or by an xsi : t ype
attribute in the instance. If the latter, the instance type must be an allowed
substitution for the type given in the schema; what is allowed is controlled by the
bl ock attribute in the element declaration. At this same time, default values and
other infoset contributions are applied.

Next the processor checks the immediate attributes and contents of the element,
comparing these against the attributes and contents permitted by the element’s
type. For example, considering a shi pTo element such as the one in Section 2.1,
the processor checks what is permitted for an Addr ess, because that is the

shi pTo element’s type.

If the element has a simple type, the processor verifies that the element has no
attributes or contained elements, and that its character content matches the rules
for the simple type. This sometimes involves checking the character sequence
against regular expressions or enumerations, and sometimes it involves checking
that the character sequence represents a value in a permitted range.

If the element has a complex type, then the processor checks that any required
attributes are present and that their values conform to the requirements of their
simple types. It also checks that all required subelements are present, and that the
sequence of subelements (and any mixed text) matches the content model
declared for the complex type. Regarding subelements, schemas can either
require exact name matching, permit substitution by an equivalent element or
permit substitution by any element allowed by an 'any’ particle.

Unless a schema indicates otherwise (as it can for 'any’ particles) conformance
checking then proceeds one level more deeply by looking at each subelement in
turn, repeating the process described above.

A Acknowledgements

Many people have contributed ideas, material and feedback that has improved
this document. In particular, the editor acknowledges contributions from David

56

Beech, Paul Biron, Don Box, Allen Brown, David Cleary, Dan Connolly, Roger
Costello, Martin Durst, Martin Gudgin, Dave Hollander, Joe Kesselman, John
McCarthy, Andrew Layman, Eve Maler, Ashok Malhotra, Noah Mendelsohn,
Michael Sperberg-McQueen, Henry Thompson, Misha Wolf, and Priscilla
Walmsley for validating the examples.

B Simple Types & their Facets

The legal values for each simple type can be constrained through the application
of one or more facets. Tables B1l.a and B1.b list all of XML Schema'’s built -in
simple types and the facets applicable to each type. The names of the simple
types and the facets are linked from the tables to the corresponding descriptions
in XML Schema Part 2: Datatypes

[Table B1.a. Simple Types & Applicable Facets

| Simple Types || Facets
| Hlenqth HminLenqth HmaxLenqth Hpattern Henumeration HwhiteSl
string Ly v I v Ly Iy | v
normalizedsting || v || y | y | | |
[token Ly [v I v | | |

[byte L | | | |
unsignedByte || || | | | |

base6aBinary || y || vy || vy | | |

[hexBinary Ly | v I v | |

linteger L | | | |
[positiveinteger || || | | | |

Inegativelnteger || I | | | |
InonNegativelnteger|| I I | | |
InonPositivelnteger || I I | | |

int L | | | |

[unsignedint L | | | |

llong L | | | |
unsignediong || | | | | |

[short [[[[[[
lunsignedShort || | | | [[
|decimal [[[[[[
[float [[[[[[
[double [[[[[[
lboolean | | [| | |
ftime [[[[[[
[dateTime [[[[[[
[duration [[[[[[
[date [[[[[[

< (I K I I (K I I I [I I (I I (I |[I< [I]I<]I<[I<

<TIKIKIKIKIKIK K IKIIKIKIKIIKIIKIIKIKIKI|I<([IK(IKI|IKI|I<|[<|[<|[<
<|I<|I<|[<|I<I<|I<|I<|[<[<I<|[<II<|<|l<|I<|[<[<I|<|[<|[<I|<|[<|< |~

< (I [|I=<

57

lgMonth [[[[
lgYear [[[[
laYearMonth [[[[
lgDay [[[[
laMonthDay [[[[
[Name [[[[

[QName Ly | | |
[NCName Ly | | |
[anyURI Ly | | |
language Ly | | |

iD Ly | | | |

IDREF [[[[[
IDREFS [[[[[
ENTITY [[[Ly |
[ENTITIES [[[[[
INOTATION [[[Ly |
INMTOKEN [[[Ly | [
INMTOKENS | | | | | |

The facets listed in Table B1.b apply only to simple types which are ordered. Not
all simple types are ordered and so B1.b does not list all of the simple types.

< I I I IK I <[(I I |I<

< (K I I (K IK I I I I I ((IKIK I |[I<([<I]/I[<|[I<
< (KKK (KK I K [IKIK I ([IKIIK I [[/ (<

< I I IK I <[(I I I ([[[<
< I << I I < [(I I I [[[<
< I I I I I I IS (I I I ([[[<

|Tab|e Bl.b. Simple Types & Applicable Facets
| Simple Types || Facets

max max min min
Inclusive [|[Exclusive [[Inclusive ||[Exclusive

totalDigits ||fractio n

[byte I
lunsignedByte |

linteger |
lpositivelnteger ||
Inegativelnteger ||
InonNegativelnteger||
InonPositivelnteger ||
int |
lunsignedint |

llong |
lunsignedLong |

[short |
lunsignedShort ||
ldecimal |
float |

<
<
<
<

< (I << I I < I (I I I (I [][<
IKIKIKIKIKIKIKIKIKIKIKIK I

<< I IK I I I ((IK(IKIK I I ([[I<
<< I I I I I ((IK(IKIK I I ([[I<
<< I IK I I I ((IK(IKIK I I ([[I<
< I I IKIK I I (IK(IK(IK I I ([[I<

(6}
[e0]

[double | [| [| |

fime |

ldateTime |

lduration |

date |

lgMonth |

lgYear |

lgYearMonth |

lgDay |

< I << I I I I [(1=

< I << I I I I [(1=
< I << I I I I [(1=
< I << I I I I [(1=

lgMonthDay |

C Using Entities

XML 1.0 provides various types of entities which are named fragments of content
that can be used in the construction of both DTD’s (parameter entities) and
instance documents. In Section 2.7, we noted how named groups mimic
parameter entities. In this section we show how entities can be declared in
instance documents, and how the functional equivalents of entities can be
declared in schemas.

Suppose we want to declare and use an entity in an instance document, and that
document is also constrained by a schema. For example:

Declaring and referencing an entity in an instance document.

<?xm version="1.0" ?>

<I DOCTYPE PurchaseOrder [

<IENTITY eacute "é">

|

<purchaseOrder xmIns="http://www.example.com/PO1"
orderDate="1999-10-20>

<l-- etc. -->

<city>Montréal</city>

<l-- etc. -->

</purchaseOrder>

Here, we declare an entity called eacut e as part of an internal (DTD) subset, and
we reference this entity in the content of the ci t y element. Note that when this
instance document is processed, the entity will be dereferenced before schema
validation takes place. In other words, a schema processor will determine the
validity of the ci t y element using Mont r éal as the element’s value.

We can achieve a similar but not identical outcome by declaring an element in a
schema, and by setting the element’s content appropriately:

<xsd: el ement nane="eacute" type="xsd:token" fixed="4¢&"/>

And this element can be used in an instance document:

Using an element instead of an entity in an instance document.

59

<?xm version="1.0" ?>

<pur chaseOrder xm ns="http://ww. exanpl e. coni POL"
xm ns: c="http://ww. exanpl e. conf char act er El enent s"
or der Dat e="1999- 10- 20>

<l-- etc. -->
<ci ty>Montr<c: eacute/ >al </city>
<l-- etc. -->

</ pur chaseOr der >

In this case, a schema processor will process two elements, a ci t y element, and
an eacut e element for the contents of which the processor will supply the single
character é. Note that the extra element will complicate string matching; the two
forms of the name "Montréal” given in the two examples above will not match
each other using normal string-comparison techniques.

D Regular Expressions

XML Schema's pat t er n facet uses a regular expression language that supports
Unicode. It is fully described in XML Schema Part 2. The language is similar to the
regular expression language used in the Perl Programming language, although
expressions are matched against entire lexical representations rather than user-
scoped lexical representations such as line and paragraph. For this reason, the
expression language does not contain the metacharacters ~ and $, although * is
used to express exception, e.g. [*0-9]x.

[Table D1. Examples of Regular Expressions |

[Expression |IMatch(s) |
[Chapter \d ||Chapter 0, Chapter 1, Chapter 2 ... |
Chaptens\d Chapter followed by a single whitespace character (space, tab,

newline, etc.), followed by a single digit
Chapter followed by a single whitespace character (space, tab,

Chapter\s\w newline, etc.), followed by a word character (XML 1.0 Letter or
Digit)
[Espanñola|[Espafiola |
\p{Lu} any uppercase character, the value of \p{} (e.g. "Lu") is defined
b by Unicode

any Greek character, the 'Is' construction may be applied to

\p{lsGreek} any block name (e.g. "Greek") as defined by Unicode

\P{IsGreek} any non-Greek character, the Is constr_uction may_be applied
to any block name (e.g. "Greek") as defined by Unicode

la*x X, ax, aax, aaax ... |

la?x |lax, x |

la+x lax, aax, aaax ... |

(alb)+x ax, bx, aax, abx, bax, bbx, aaax, aabx, abax, abbx, baax, babx,
bbax, bbbx, aaaax

[[abcde]x llax, bx, cx, dx, ex |

[[a-e]x lax, bx, cx, dx, ex |

[-ae]x |l-x, ax, ex |

60

[ae-]x lax, ex, -x

[["0-9]x lany non-digit character followed by the character x
\Dx lany non-digit character followed by the character x
|.x |lany character followed by the character x

|.*abc.* |l1x2abc, abc1x2, z3456abchooray ...

lab{2}x llabbx

lab{2,4}x |labbx, abbbx, abbbbx

lab{2,}x labbx, abbbx, abbbbx ...

[(@ab){2}x |lababx

E Index

XML Schema Elements. Each element name is linked to a formal XML
description in either the Structures or Datatypes parts of the XML Schema
specification. Element names are followed by one or more links to examples
(identified by section number) in the Primer.

t
any: 5.5
anyAttribute:55
appl nf o: 2.6
attribute: 2.2
attri but eG oup: 2.8
choi ce: 2.7
conpl exCont ent : 2.5.3
conpl exType: 2.2
docunent ati on: 2.6
el enent: 2.2
enuner ati on: 2.3
ext ensi on: 2.5.1, 4.2
field:5.1

group: 2.7

i nport:5.4

i ncl ude: 4.1
key: 5.2

keyref:5.2
| engt h: 2.3.1

list:2.3.1

max| ncl usi ve: 2.3
maxLengt h: 2.3.1

m nl ncl usi ve: 2.3

m nLengt h: 2.3.1
pattern: 2.3
redefine: 4.5
restriction:2.3,4.4
schema: 2.1

sel ector:5.1

61

sequence: 2.7
si npl eContent:2.5.1

si npl eType: 2.3
uni on: 2.3.2
uni que: 5.1

XML Schema Attributes. Each attribute name is followed by one or more pairs of
references. Each pair of references consists of a link to an example in the Primer,
plus a link to a formal XML description in either the Structures or Datatypes parts
of the XML Schema specification.

e abstract: element declaration [Structures], complex type definition
[Structures]
e attri but eFornmDef aul t:schenma element [Structures]
base: simple type definition [Datatypes], complex type definition
[Structures]
bl ock: complex type definition [Structures],
bl ockDef aul t : schenma element [Structures]
def aul t : attribute declaration [Structures],
def aul t : element declaration [Structures],
el enent For nDef aul t : schenma element [Structures]
fi nal : complex type definition [Structures]
fi nal Def aul t: schenma element [Structures]
fi xed: attribute declaration [Structures],
fi xed: element declaration [Structures]
fi xed: simple type definition [Datatypes]
f or m element declaration [Structures], attribute declaration [Structures]
I t emlype: list type definition [Datatypes]
menber Types: union type definition [Datatypes]
maxQccur s: element declaration [Structures]
m nQccur s: element declaration [Structures]
m xed: complex type definition [Structures]
nane: element declaration [Structures], attribute declaration [Structures],
complex type definition [Structures], simple type definition [Datatypes]
nanespace: any element [Structures], i ncl ude element [Structures]
noNanespaceSchenalLocat i on: i nst ance element [Structures]
xsi:nil:instance element [Structures]
ni | | abl e: element declaration [Structures]
processCont ent s: any element [Structures], anyAt t ri but e element
[Structures]
r ef : element declaration [Structures]
schemaLocat i on: include specification [Structures], redefine specification
[Structures], import specification [Structures]
xsi : schemalLocat i on: instance attribute [Structures]
substi tuti onG oup: element declaration [Structures]
t ar get Nanespace: schena element [Structures]
t ype: element declaration [Structures], attribute declaration [Structures]
Xsi :type:instance element [Structures]
use: attribute declaration [Structures]
xpat h: sel ect or &fi el d elements [Structures]

62

XML Schema’s simple types are described in Table 2.

63

	XML Schema Part 0: Primer
	W3C Recommendation, 2 May 2001
	Abstract
	Status of this document
	Table of contents
	1 Introduction
	2 Basic Concepts: The Purchase Order
	2.1 The Purchase Order Schema
	2.2 Complex Type Definitions, Element & Attribute Declarations
	2.2.1 Occurrence Constraints
	2.2.2 Global Elements & Attributes
	2.2.3 Naming Conflicts

	2.3 Simple Types
	2.3.1 List Types
	2.3.2 Union Types

	2.4 Anonymous Type Definitions
	2.5 Element Content
	2.5.1 Complex Types from Simple Types
	2.5.2 Mixed Content
	2.5.3 Empty Content
	2.5.4 anyType

	2.6 Annotations
	2.7 Building Content Models
	2.8 Attribute Groups
	2.9 Nil Values

	3. Advanced Concepts I: Namespaces, Schemas & Qualification
	3.1 Target Namespaces & Unqualified Locals
	3.2 Qualified Locals
	3.3 Global vs. Local Declarations
	3.4 Undeclared Target Namespaces

	4. Advanced Concepts II: The International Purchase Order
	4.1 A Schema in Multiple Documents
	4.2 Deriving Types by Extension
	4.3 Using Derived Types in Instance Documents
	4.4 Deriving Complex Types by Restriction
	4.5 Redefining Types & Groups
	4.6 Substitution Groups
	4.7 Abstract Elements and Types
	4.8 Controlling the Creation & Use of Derived Types

	5. Advanced Concepts III: The Quarterly Report
	5.1 Specifying Uniqueness
	5.2 Defining Keys & their References
	5.3 XML Schema Constraints vs. XML 1.0 ID Attributes
	5.4 Importing Types
	5.4.1 Type Libraries

	5.5 Any Element, Any Attribute
	5.6 schemaLocation
	5.7 Conformance

	A Acknowledgements
	B Simple Types & their Facets
	C Using Entities
	D Regular Expressions
	E Index

	
	World Wide Web Consortium Title Page

