XML-Signature Syntax and Processing

T WiC
XML-Signature Syntax and Processing
W3C Recommendation 12 February 2002

Thisversion:
http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/
http://www.ietf.org/rfc/rfc3275.txt

Latest version:
http://www.w3.org/TR/xmldsig-core/

®

Previous version:
http://www.w3.0rg/TR/2001/PR-xmldsig-core-20010820/
http://www.ietf.org/rfc/rfc3075.txt [corresponds to CR-xmldsig-core-20001031]

Editors
Donald Eastlake <dee3@torgue.pothole.com>
Joseph Reagle <reagle@w3.org>
David Solo <dsolo@alum.mit.edu>

Authors
Mark Bartel <mbartel @accelio.com>
John Boyer <jboyer@PureEdge.com>
Barb Fox <bfox@Exchange.Microsoft.com>

Brian LaMacchia <bal @microsoft.com>

Ed Simon <edsimon@xml sec.com>
Contributors

See Acknowledgements

Copyright © 2002 The Internet Society & W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, docum ent
use and software licensing rules apply.

Abstract

This document specifies XML digital signature processing rules and syntax. XML Signatures provide integrity, message
authentication, and/or signer authentication services for data of any type, whether located within the XML that includes the
signature or elsewhere.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director asa W3C
Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another
document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of the Web.

This specification was produced by the IETF/W3C XML Signature Working Group (W3C Activity Statement) which believes the
specification is sufficient for the creation of independent interoperable implementations; the Interoperability Report shows at | east

http://www.w3.0rg/TR/xmldsig-core/ (1 of 46) [8/12/2002 7:06:44 PM]

http://www.ietf.org/
http://www.w3.org/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.ietf.org/rfc/rfc3075.txt
http://www.w3.org/TR/2001/CR-xmldsig-core-20010419/
mailto:dee3@torque.pothole.com
mailto:reagle@w3.org
mailto:dsolo@alum.mit.edu
mailto:mbartel@accelio.com
mailto:jboyer@PureEdge.com
mailto:bfox@Exchange.Microsoft.com
mailto:bal@microsoft.com
mailto:edsimon@xmlsec.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.ietf.org/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Signature/
http://www.w3.org/Signature/Activity.html
http://www.w3.org/Signature/2001/04/05-xmldsig-interop.html

XML-Signature Syntax and Processing

10 implementations with at |east two interoperable implementations over every feature.

Patent disclosures relevant to this specification may be found on the Working Group's patent disclosure page, in conformance
with W3C policy, and the |ETF Page of Intellectual Property Rights Notices, in conformance with IETF policy.

Please report errorsin this document to w3c-ietf-xmldsig@wa3.org (archive).

Thelist of known errorsin this specification is available at http://www.w3.0rg/2001/10/xmldsig-errata.

The English version of this specification is the only normative version. Information about transations of this document (if any) is
available http://www.w3.0rg/Signature/2002/02/xmldsig-transl ations

A list of current W3C Technical Reports can be found at http://www.w3.org/TR/.

Table of Contents

1. Introduction
1. Editorial Conventions

2. Design Philosophy

3. Versions, Namespaces and |dentifiers

4. Acknowledgements

2. Signature Overview and Examples
1. Simple Example (Si gnat ur e, Si gnedl nf o, Met hods, and Ref er ences)
1. Moreon Ref er ence
2. Extended Example (Obj ect and Si gnat ur ePr operty)
3. Extended Example (Obj ect and Mani f est)
3. Processing Rules

1. Signature Generation
2. Signature Validation
4. Core Signature Syntax
1. The Si gnat ur e element
2. The Si gnat ur eVal ue Element

3. The Si gnedl nf o Element
1. TheCanoni cal i zat i onMet hod Element
2. The Si gnat ur eMet hod Element
3. The Ref er ence Element
1. The URI Attribute
The Reference Processing Model
Same-Document URI-References

The Tr ansf or ns Element
The Di gest Met hod Element
The Di gest Val ue Element

o gk~ w DN

4. TheKeyl nf o Element
1. The KeyNane Element
2. The KeyVal ue Element
1. The DSAKeyVal ue Element

http://www.w3.0rg/TR/xmldsig-core/ (2 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/Signature/Disclosures.html
http://www.ietf.org/ipr.html
mailto:w3c-ietf-xmldsig@w3.org
http://lists.w3.org/Archives/Public/xml-encryption/
http://www.w3.org/2001/10/xmldsig-errata
http://www.w3.org/Signature/2002/02/xmldsig-translations
http://www.w3.org/TR/

XML-Signature Syntax and Processing

2. The RSAKeyVal ue Element
3. TheRet ri eval Met hod Element
4. The X509Dat a Element
5. The PGPDat a Element
6. The SPKI Dat a Element
7. The Mgnt Dat a Element
5. TheQvj ect Element
5. Additional Signature Syntax
1. The Mani f est Element
2. TheSi gnat ur ePr operti es Element

3. Processing Instructions

4. Commentsin dsig Elements

6. Algorithms
1. Algorithm Identifiers and | mplementation Reguirements

Message Digests
Message Authentication Codes
Signature Algorithms
Canonicalization Algorithms
Transform Algorithms
1. Canonicalization
2. Base64
3. XPath Filtering
4. Enveloped Signature Transform
5. XSLT Transform
7. XML Canonicalization and Syntax Constraint Considerations
1. XML 1.0, Syntax Constraints, and Canonicalization
2. DOM/SAX Processing and Canonicalization
3. Namespace Context and Portable Signatures
8. Security Considerations
1. Transforms
1. Only What is Signed is Secure
2. Only What is"Seen" Should be Signed
3. "See" What is Signed
2. Check the Security Model
3. Algorithms, Key Lengths, Etc.
9. Schema, DTD, Data Model, and Valid Examples
10. Definitions
11. References
12. Authors Address

© 0k~ w N

http://www.w3.org/TR/xmldsig-core/ (3 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

1.0 Introduction

This document specifies XML syntax and processing rules for creating and representing digital signatures. XML Signatures can
be applied to any digital content (data object), including XML. An XML Signature may be applied to the content of one or more
resources. Enveloped or enveloping signatures are over data within the same XML document as the signature; detached signatures
are over data external to the signature element. More specifically, this specification defines an XML signature element type and
an XML signature application; conformance requirements for each are specified by way of schema definitions and prose
respectively. This specification aso includes other useful types that identify methods for referencing collections of resources,
algorithms, and keying and management information.

The XML Signature is a method of associating a key with referenced data (octets); it does not normatively specify how keys are
associated with persons or institutions, nor the meaning of the data being referenced and signed. Consequently, while this
specification is an important component of secure XML applications, it itself is not sufficient to address all application
security/trust concerns, particularly with respect to using signed XML (or other data formats) as a basis of human-to-human
communication and agreement. Such an application must specify additional key, algorithm, processing and rendering
requirements. For further information, please see Security Considerations (section 8).

1.1 Editorial and Conformance Conventions

For readability, brevity, and historic reasons this document uses the term "signature” to generally refer to digital authentication
values of al types. Obviously, the term is also strictly used to refer to authentication values that are based on public keys and that
provide signer authentication. When specifically discussing authentication values based on symmetric secret key codes we use the
terms authenticators or authentication codes. (See Check the Security Model, section 8.3.)

This specification provides an XML Schema[XML-schema] and DTD [XML]. The schemadefinition is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in REC2119

[KEYWORDS]:

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for
causing harm (e.g., limiting retransmissions)"

Consequently, we use these capitalized key words to unambiguously specify requirements over protocol and application features
and behavior that affect the interoperability and security of implementations. These key words are not used (capitalized) to
describe XML grammar; schema definitions unambiguously describe such requirements and we wish to reserve the prominence
of these terms for the natural language descriptions of protocols and features. For instance, an XML attribute might be described
as being "optional." Compliance with the Namespacesin XML specification [XML-ng] is described as"REQUIRED."

1.2 Design Philosophy

The design philosophy and requirements of this specification are addressed in the XML -Signature Requirements document
[XML-Signature-RD].

1.3 Versions, Namespaces and ldentifiers

No provision is made for an explicit version number in this syntax. If afuture version is needed, it will use a different namespace.
The XML namespace [XML-ns] URI that MUST be used by implementations of this (dated) specification is:

xm ns="http://ww. w3. org/ 2000/ 09/ xm dsi g#"

This namespace is also used as the prefix for algorithm identifiers used by this specification. While applications MUST support
XML and XML namespaces, the use of internal entities[XML] or our "dsig" XML namespace prefix and defaulting/scoping

conventions are OPTIONAL; we use these facilities to provide compact and readable examples.

This specification uses Uniform Resource Identifiers [URI] to identify resources, algorithms, and semantics. The URI in the
namespace declaration aboveis also used as a prefix for URIs under the control of this specification. For resources not under the

http://www.w3.0rg/TR/xmldsig-core/ (4 of 46) [8/12/2002 7:06:44 PM]

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/REC-xml#sec-internal-ent
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-prefix

XML-Signature Syntax and Processing

control of this specification, we use the designated Uniform Resource Names [URN] or Uniform Resource Locators [URL]
defined by its normative external specification. If an external specification has not allocated itself a Uniform Resource Identifier
we allocate an identifier under our own namespace. For instance:

Si gnat ur eProperti es isidentified and defined by this specification's namespace
http://www.w3.0rg/2000/09/xml dsi g#Si gnatureProperties
XSLT isidentified and defined by an external URI
http://www.w3.org/TR/1999/REC-xst-19991116
SHAl isidentified viathis specification's namespace and defined via a normative reference
http://www.w3.0rg/2000/09/xmldsi g#shal
FIPS PUB 180-1. Secure Hash Sandard. U.S. Department of Commerce/National Institute of Standards and Technology.

Finally, in order to provide for terse namespace declarations we sometimes use XML internal entities [XML] within URIs. For
instance:

<?xm version='1l.0"?>

<! DOCTYPE Si gnat ure SYSTEM
"xm dsi g-core-schema. dtd” [<!ENTITY dsig
"http://ww.w3. org/ 2000/ 09/ xm dsi g#">] >

<Si gnature xm ns="&dsi g;" 1d="MFirstSignature">
<Si gnedl nf o>

1.4 Acknowledgements

The contributions of the following Working Group membersto this specification are gratefully acknowledged:
« Mark Bartel, Accelio (Author)
« John Boyer, PureEdge (Author)
o Mariano P. Consens, University of Waterloo
« John Cowan, Reuters Health
» Donald Eastlake 3rd, Motorola (Chair, Author/Editor)
« Barb Fox, Microsoft (Author)
« Christian Geuer-Pollmann, University Siegen
o Tom Gindin, IBM
« Phillip Hallam-Baker, VeriSign Inc
« Richard Himes, US Courts
« Merlin Hughes, Baltimore
« Gregor Karlinger, IAIK TU Graz
« Brian LaMacchia, Microsoft (Author)
« Peter Lipp, IAIK TU Graz
« Joseph Reagle, W3C (Chair, Author/Editor)
o Ed Simon, XMLsec (Author)
« David Solo, Citigroup (Author/Editor)
« Petteri Stenius, Capslock
« Raghavan Srinivas, Sun
o Kent Tamura, IBM
« Winchel Todd Vincent 111, GSU
« Carl Wallace, Corsec Security, Inc.
» Greg Whitehead, Signio Inc.

Asarethe Last Call comments from the following:

http://www.w3.org/TR/xmldsig-core/ (5 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/REC-xml#sec-internal-ent

XML-Signature Syntax and Processing

« Dan Connolly, W3C
o Paul Biron, Kaiser Permanente, on behalf of the XML Schema WG.

o Martin J. Duerst, W3C; and Masahiro Sekiguchi, Fujitsu; on behalf of the Internationalization WG/IG.
« Jonathan Marsh, Microsoft, on behalf of the Extensible Stylesheet L anquage WG.

2.0 Signature Overview and Examples

This section provides an overview and examples of XML digital signature syntax. The specific processing is given in Processing
Rules (section 3). The formal syntax isfound in Core Signature Syntax (section 4) and Additional Signature Syntax (section 5).

In this section, an informal representation and examples are used to describe the structure of the XML signature syntax. This
representation and examples may omit attributes, details and potential features that are fully explained later.

XML Signatures are applied to arbitrary digital content (data objects) viaan indirection. Data objects are digested, the resulting
valueis placed in an element (with other information) and that element is then digested and cryptographically signed. XML
digital signatures are represented by the Si gnat ur e element which has the following structure (where "?* denotes zero or one
occurrence; "+" denotes one or more occurrences; and "*" denotes zero or more occurrences):

<Si gnature | D?>
<Si gnedl nf 0>
<Canoni cal i zati onMet hod/ >
<Si gnat ur eMet hod/ >
(<Reference URI? >
(<Transforns>)?
<Di gest Met hod>
<Di gest Val ue>
</ Ref erence>) +
</ Si gnedI nf 0>
<Si gnat ur eVal ue>
(<Keyl nf 0>) ?
(<Cbject I1D?>)*
</ Si gnat ur e>

Signatures are related to data objects via URIs [URI]. Within an XML document, signatures are related to local data objects via
fragment identifiers. Such local data can be included within an enveloping signature or can enclose an enveloped signature.
Detached signatures are over external network resources or local data objects that reside within the same XML document as

sibling elements; in this case, the signature is neither enveloping (signature is parent) nor enveloped (signature is child). Since a
Si gnat ur e element (and its | d attribute value/name) may co-exist or be combined with other elements (and their IDs) within a
single XML document, care should be taken in choosing names such that there are no subsequent collisions that violate the 1D

uniqueness validity constraint [XML].

2.1 Simple Example (Si gnat ur e, Si gnedl nf o, Met hods, and Ref er ence)s

The following example is a detached signature of the content of the HTML4 in XML specification.

[s01] <Signature Id="MFirstSignature"
xm ns="http://ww. w3. org/ 2000/ 09/ xm dsi g#" >
[s02] <Si gnedl nf 0>
[s03] <Canoni cal i zati onMet hod
Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xml - c14n- 20010315"/ >
[s04] <Si gnat ur eMet hod
Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#dsa-shal"/ >
[s05] <Ref erence
URI ="http://ww. w3. or g/ TR/ 2000/ REC- xht ml 1- 20000126/ " >

http://www.w3.org/TR/xmldsig-core/ (6 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/XML/Schema.html
http://www.w3.org/International/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing
http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing
http://www.w3.org/TR/REC-xml#id
http://www.w3.org/TR/REC-xml#id

XML-Signature Syntax and Processing

[s06] <Tr ansf or ns>
[s07] <Transform
Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xml - ¢c14n- 20010315"/ >
[s08] </ Tr ansf or ns>
[s09] <Di gest Met hod Al gorithme"http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
[s10] <Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

[s11] </ Ref er ence>

[s12] </ Signedl nfo>

[s13] <Si gnat ur evVal ue>MCOCFFr VLt Rl k=. . . </ Si gnat ur eVal ue>
[s14] <Keyl nf 0>

[s15a] <KeyVal ue>

[s15b] <DSAKeyVal ue>

[s15¢c] <P> L <P .. </ P<G. . </ G<Y> L <Y
[s15d] </ DSAKeyVal ue>

[s15€] </ KeyVal ue>

[s16] </ Keyl nf 0>
[s17] </ Signature>

[s02- 12] Therequired Si gnedl nf o element isthe information that is actually signed. Core validation of Si gnedI nf o
consists of two mandatory processes: validation of the signature over Si gnedl nf o and validation of each Ref er ence digest

within Si gned| nf 0. Note that the algorithms used in calculating the Si gnat ur eVal ue are also included in the signed
information whilethe Si gnat ur eVal ue element isoutside Si gnedl nf o.

[sO3] TheCanoni cal i zati onMet hod isthe algorithm that is used to canonicalizethe Si gnedI nf o element beforeitis
digested as part of the signature operation. Note that this example, and all examplesin this specification, are not in canonical
form.

[s04] TheSi gnat ur eMet hod isthe agorithm that is used to convert the canonicalized Si gnedl nf o into the

Si gnat ur eVal ue. It isacombination of adigest algorithm and a key dependent algorithm and possibly other algorithms such
as padding, for example RSA-SHA1. The algorithm names are signed to resist attacks based on substituting a weaker algorithm.
To promote application interoperability we specify a set of signature algorithms that MUST be implemented, though their useis
at the discretion of the signature creator. We specify additional algorithms as RECOMMENDED or OPTIONAL for
implementation; the design also permits arbitrary user specified algorithms.

[s05- 11] Each Ref er ence element includes the digest method and resulting digest value calculated over the identified data
object. It also may include transformations that produced the input to the digest operation. A data object is signed by computing
its digest value and a signature over that value. The signature is later checked via reference and signature validation.

[s14-16] Keyl nf o indicates the key to be used to validate the signature. Possible forms for identification include certificates,
key names, and key agreement algorithms and information -- we define only afew. Key| nf o isoptional for two reasons. First,
the signer may not wish to reveal key information to all document processing parties. Second, the information may be known
within the application’s context and need not be represented explicitly. Since Key| nf o isoutside of Si gnedl nf o, if the signer
wishes to bind the keying information to the signature, a Ref er ence can easily identify and include the Key| nf o as part of the
signature.

2.1.1 More on Ref er ence

[sO5] <Reference URI ="http://ww. w3. org/ TR/ 2000/ REC- xht m 1- 20000126/ " >

[s06] <Tr ansf or ms>
[s07] <Transform
Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315"/ >
[s08] </ Tr ansf or ns>
[s09] <Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
[s10] <Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>
[s11] </ Ref er ence>

[sO5] Theoptional URI attribute of Ref er ence identifies the data object to be signed. This attribute may be omitted on at
most one Ref er ence inaSi gnat ur e. (Thislimitation isimposed in order to ensure that references and objects may be

http://www.w3.0rg/TR/xmldsig-core/ (7 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

matched unambiguously.)

[s05- 08] Thisidentification, along with the transforms, is a description provided by the signer on how they obtained the signed
data object in the form it was digested (i.e. the digested content). The verifier may obtain the digested content in another method
so long as the digest verifies. In particular, the verifier may obtain the content from a different location such as alocal store than
that specified in the URI .

[s06-08] Transforns isanoptiona ordered list of processing steps that were applied to the resource's content before it was
digested. Transforms can include operations such as canonicalization, encoding/decoding (including compression/inflation),
XSLT, XPath, XML schema validation, or XInclude. XPath transforms permit the signer to derive an XML document that omits
portions of the source document. Consequently those excluded portions can change without affecting signature validity. For
example, if the resource being signed encloses the signature itself, such atransform must be used to exclude the signature value
from its own computation. If no Tr ansf or ns element is present, the resource's content is digested directly. While the Working
Group has specified mandatory (and optional) canonicalization and decoding algorithms, user specified transforms are permitted.

[s09-10] D gest Met hod isthe algorithm applied to the data after Tr ansf or ns isapplied (if specified) to yield the
Di gest Val ue. Thesigning of the Di gest Val ue iswhat binds a resources content to the signer's key.

2.2 Extended Example (Obj ect and Si gnat ur ePr operty)

This specification does not address mechanisms for making statements or assertions. Instead, this document defines what it means
for something to be signed by an XML Signature (integrity, message authentication, and/or signer authentication). Applications

that wish to represent other semantics must rely upon other technologies, such as[XML, RDF]. For instance, an application might

useaf oo: assur edby attribute within its own markup to reference aSi gnat ur e element. Consequently, it's the application
that must understand and know how to make trust decisions given the validity of the signature and the meaning of assur edby
syntax. We also definea Si gnat ur ePr oper ti es element type for the inclusion of assertions about the signature itself (e.g.,
signature semantics, the time of signing or the serial number of hardware used in cryptographic processes). Such assertions may
be signed by including a Ref er ence for the Si gnat ur ePr operti es inSi gnedl nf o. While the signing application
should be very careful about what it signs (it should understand what isin the Si gnat ur ePr oper t y) areceiving application
has no obligation to understand that semantic (though its parent trust engine may wish to). Any content about the signature
generation may be located within the Si gnat ur ePr oper t y element. The mandatory Tar get attribute references the

Si gnat ur e element to which the property applies.

Consider the preceding example with an additional referenceto alocal Cbj ect that includesaSi ghat ur ePr operty
element. (Such a signature would not only be detached [p02] but enveloping [p03] .)

[] <Signature |Id="MWSecondSi gnature" ...>
[pO1] <Si gnedl nf o>

[]
[pO2] <Reference URI ="http://ww. wW3. org/ TR xn - styl esheet/">
[

] Ce
[pO3] <Ref erence URI ="#AMadeUpTi neSt anp”

[p04] Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#Si gnat ur eProperti es">
[pO5] <Di gest Met hod Al gorithme"http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
[pO6] <Di gest Val ue>k3453r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

[pO7] </ Ref erence>

[p08] </ Si gnedl nf 0>

[p09] ...

[p10] <Object>

[p11] <Si gnat ur eProperti es>

[p12] <Si gnat ureProperty |d="AMadeUpTi neSt anp" Tar get =" #MySecondSi gnat ure" >
[p13] <tinmestanp xmns="http://ww.ietf.org/rfcXXXX. txt">

[p14] <dat €>19990908</ dat e>

[p15] <time>14: 34: 34: 34</ti me>

[p16] </tinmestanp>

[p17] </ Si gnat ur eProperty>

[p18] </ Si gnat ur eProperties>
[p19] </ Object>

http://www.w3.org/TR/xmldsig-core/ (8 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

[p20] </ Si gnat ur e>

[pO4] Theoptiona Type attribute of Ref er ence provides information about the resource identified by the URI . In particular,
it canindicatethat itisan Cbj ect, Si gnat ur ePr operty, or Mani f est element. This can be used by applications to
initiate special processing of some Ref er ence elements. References to an XML data element within an Cbj ect element
SHOULD identify the actual element pointed to. Where the element content is not XML (perhapsit is binary or encoded data) the
reference should identify the Cbj ect and the Ref er ence Type, if given, SHOULD indicate Cbj ect . Notethat Type is
advisory and no action based on it or checking of its correctnessis required by core behavior.

[p10] nj ect isan optional element for including data objects within the signature element or elsewhere. The Gbj ect can be
optionally typed and/or encoded.

[p11- 18] Signature properties, such astime of signing, can be optionally signed by identifying them from within a
Ref er ence. (These properties are traditionally called signature "attributes" although that term has no relationship to the XML
term "attribute”.)

2.3 Extended Example (Obj ect and Mani f est)

The Mani f est element is provided to meet additional requirements not directly addressed by the mandatory parts of this
specification. Two requirements and the way the Mani f est satisfies them follow.

First, applications frequently need to efficiently sign multiple data objects even where the signature operation itself is an
expensive public key signature. This requirement can be met by including multiple Ref er ence elementswithin Si gnedl nf o
since the inclusion of each digest secures the data digested. However, some applications may not want the core validation
behavior associated with this approach because it requires every Ref er ence within Si gnedI nf o to undergo reference
validation -- the Di gest Val ue elements are checked. These applications may wish to reserve reference validation decision
logic to themselves. For example, an application might receive asignature valid Si gnedl nf o element that includes three

Ref er ence elements. If asingle Ref er ence fails (the identified data object when digested does not yield the specified

Di gest Val ue) the signature would fail core validation. However, the application may wish to treat the signature over the two
valid Ref er ence elements as valid or take different actions depending on which fails. To accomplish this, Si gnedI nf o
would referenceaMani f est element that contains one or more Ref er ence elements (with the same structure as those in

Si gnedI nf 0). Then, reference validation of the Mani f est isunder application control.

Second, consider an application where many signatures (using different keys) are applied to alarge number of documents. An
inefficient solution isto have a separate signature (per key) repeatedly applied to alarge Si gnedl nf o element (with many
Ref er ences); thisiswasteful and redundant. A more efficient solution is to include many referencesin asingle Mani f est
that is then referenced from multiple Si gnat ur e elements.

The example below includes a Ref er ence that signsaMani f est found within the Cbj ect element.

[1 ...
[m01] <Ref erence URI ="#M/First Mani fest"

[m02] Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#Mani f est " >
[MD3] <Di gest Met hod Al gorithme"http://ww. w3. org/ 2000/ 09/ xm dsi g#shal"/ >
[m04] <Di gest Val ue>345x3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

[m05] </ Ref erence>

[1 ...

[MD6] <nj ect>

[m07] <Mani fest |d="MFirstManifest">

[nD8] <Ref erence>
[mD9] -

[mLO] </ Ref er ence>
[ML1] <Ref erence>
[mL2] -

[ML3] </ Ref erence>

[ML4] </ Mani f est >
[mMLl5] </ Object>

http://www.w3.org/TR/xmldsig-core/ (9 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

3.0 Processing Rules

The sections below describe the operations to be performed as part of signature generation and validation.

3.1 Core Generation
The REQUIRED steps include the generation of Ref er ence elementsand the Si gnat ur eVal ue over Si gnedlI nf o.
3.1.1 Reference Generation

For each data object being signed:
1. Apply the Tr ansf or ns, as determined by the application, to the data object.
2. Calculate the digest value over the resulting data object.

3. Create aRef er ence element, including the (optional) identification of the data object, any (optional) transform elements,
the digest agorithm and the Di gest Val ue. (Note, it isthe canonical form of these references that are signed in 3.1.2 and
validatedin3.2.1.)

3.1.2 Signature Generation

1. Create Si gnedl nf o element with Si gnat ur eMet hod, Canoni cal i zat i onMet hod and Ref er ence(s).

2. Canonicalize and then calculate the Si gnat ur eVal ue over Si gnedI nf o based on agorithms specified in
Si gnedlI nf o.

3. Construct the Si gnat ur e element that includes Si gnedl nf o, Obj ect () (if desired, encoding may be different than
that used for signing), Key | nf o (if required), and Si gnat ur eVal ue.

Note, if the Si gnat ur e includes same-document references, [XML] or [XML-schema] validation of the document might

introduce changes that break the signature. Consequently, applications should be careful to consistently process the
document or refrain from using external contributions (e.g., defaults and entities).

3.2 Core Validation

The REQUIRED steps of core validation include (1) reference validation, the verification of the digest contained in each
Ref er ence in Si gnedl nf o, and (2) the cryptographic signature validation of the signature calculated over Si gnedl nf o.

Note, there may be valid signatures that some signature applications are unable to validate. Reasons for thisinclude failure to
implement optional parts of this specification, inability or unwillingness to execute specified algorithms, or inability or
unwillingness to dereference specified URIs (some URI schemes may cause undesirable side effects), etc.

Comparison of values in reference and signature validation are over the numeric (e.g., integer) or decoded octet sequence of the
value. Different implementations may produce different encoded digest and signature values when processing the same resources
because of variancesin their encoding, such as accidental white space. But if one uses numeric or octet comparison (choose one)
on both the stated and computed val ues these problems are eliminated.

3.2.1 Reference Validation

1. Canonicalizethe Si gnedI nf o element based on the Canoni cal i zat i onMet hod in Si gnedl nf o.
2. For each Ref er ence in Si gnedl nf o:

1. Obtain the data object to be digested. (For example, the signature application may dereference the URI and execute
Tr ansf or s provided by the signer in the Ref er ence element, or it may obtain the content through other means
such asalocal cache.)

2. Digest the resulting data object using the Di gest Met hod specified inits Ref er ence specification.

3. Compare the generated digest value against Di gest Val ue inthe Si gnedl nf o Ref er ence; if thereisany
mismatch, validation fails.

Note, Si gnedlI nf o iscanonicalized in step 1. The application must ensure that the CanonicalizationM ethod has no dangerous
side affects, such asrewriting URIs, (see Canoni cal i zat i onMet hod (section 4.3)) and that it Sees What is Signed, which is

http://www.w3.0rg/TR/xmldsig-core/ (10 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing
the canonical form.
3.2.2 Signature Validation

1. Obtain the keying information from Key| nf o or from an external source.

2. Obtain the canonical form of the Si gnat ur eMet hod using the Canoni cal i zat i onMet hod and use the result (and
previously obtained Key| nf 0) to confirm the Si gnat ur eVal ue over the Si gnedI nf o element.

Note, Key| nf o (or some transformed version thereof) may be signed viaa Ref er ence element. Transformation and validation
of thisreference (3.2.1) is orthogonal to Signature Validation which usesthe Key| nf o as parsed.

Additionaly, the Si gnat ur eMet hod URI may have been altered by the canonicalization of Si gnedI nf o (e.g.,
absolutization of relative URIS) and it is the canonical form that MUST be used. However, the required canonicalization
[XML-C14N] of this specification does not change URIs.

4.0 Core Signature Syntax

The general structure of an XML signature is described in Signature Overview (section 2). This section provides detailed syntax
of the core signature features. Features described in this section are mandatory to implement unless otherwise indicated. The
syntax is defined via DTDs and [XML-Schema] with the following XML preamble, declaration, and internal entity.

Schema Definition:

<?xm version="1.0" encodi ng="utf-8""?>
<! DOCTYPE schema
PUBLIC "-//WBC/ / DTD XM.Schema 200102//EN' "http://ww. w3. or g/ 2001/ XM_Schena. dt d"
[
<! ATTLI ST schena
xm ns: ds CDATA #FI XED "htt p://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<IENTITY dsig 'http://ww. w3. org/ 2000/ 09/ xm dsi g#' >
<IENTITY %p ''>
<IENTITY %s ''>
1>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: ds="http://ww. w3. org/ 2000/ 09/ xm dsi g#"

t ar get Nanmespace="htt p: // ww. w3. or g/ 2000/ 09/ xm dsi g#"
version="0.1" el ement FornDefaul t ="qual ified">

DTD:

<l--

The following entity declarations enable external/flexible content in
the Signature content nodel.

#PCDATA enul ates schenm: string; when conbined with el ement types it
enul at es schena m xed="true".

% o0o0. ANY permts the user to include their own el enent types from
ot her nanespaces, for exanple:

<IENTITY % KeyVal ue. ANY ' | ecds: ECDSAKeyVal ue' >

<! ELEMENT ecds: ECDSAKeyVal ue (#PCDATA) >

-->

http://www.w3.0rg/TR/xmldsig-core/ (11 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

<IENTITY % Cbj ect. ANY "' >

<IENTITY % Met hod. ANY "' >

<IENTITY % Transform ANY '' >
<IENTITY % Si gnat ur eProperty. ANY '' >
<IENTITY % Keyl nfo. ANY "' >

<IENTITY % KeyVal ue. ANY "' >

<IENTITY % PGPDat a. ANY ' ' >

<IENTI TY % X509Dat a. ANY "' >

<IENTI TY % SPKI Dat a. ANY "' >

4.0.1 The ds:CryptoBinary Simple Type

This specification definesthe ds: Cr ypt oBi nar y simple type for representing arbitrary-length integers (e.g. "bignums") in
XML as octet strings. The integer value isfirst converted to a"big endian” bitstring. The bitstring is then padded with leading
zero bits so that the total number of bits == 0 mod 8 (so that there are an integral number of octets). If the bitstring contains entire
leading octets that are zero, these are removed (so the high-order octet is always non-zero). This octet string is then base64
[MIME] encoded. (The conversion from integer to octet string is equivalent to IEEE 1363's |20SP [1363] with minimal length).

Thistypeisused by "bignum" values such as RSAKeyVal ue and DSAKeyVal ue. If avalue can be of typebase64Bi nary or
ds: Crypt oBi nary they are defined asbase64Bi nar y. For example, if the signature algorithm is RSA or DSA then

Si gnat ur eVal ue represents abignum and could be ds: Cr ypt oBi nary. However, if HMAC-SHA1 isthe signature
algorithm then Si gnat ur eVal ue could have leading zero octets that must be preserved. Thus Si gnat ur eVal ue is
generically defined as of typebase64Bi nary.

Schema Definition:

<si npl eType nanme="Crypt oBi nary" >
<restriction base="base64Bi nary">
</restriction>

</ sinpl eType>

4.1 The Si gnat ur e element

The Si gnat ur e element is the root element of an XML Signature. Implementation MUST generate laxly schemavalid
[XML-schema] Si ghat ur e elements as specified by the following schema:

Schema Definition:

<el enent name="Si gnature" type="ds: Si gnhatureType"/>
<conpl exType nane="Si gnat ureType" >
<sequence>
<el enent ref="ds: Si gnedl nfo"/>
<el enent ref="ds: Si gnat ureVval ue"/ >
<el enent ref="ds: Keylnfo" m nCccurs="0"/>
<el enent ref="ds: Object” m nCQccurs="0" maxCccurs="unbounded"/ >
</ sequence>
<attribute name="1d" type="ID" use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Si gnature (Signedlnfo, SignatureValue, Keylnfo?, Object*) >
<I ATTLI ST Si gnature

xm ns CDATA #FI XED ' http://ww. w3. or g/ 2000/ 09/ xm dsi g#'

Id ID #I MPLIED >

http://www.w3.0rg/TR/xmldsig-core/ (12 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/xmlschema-2/#base64Binary
http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax

XML-Signature Syntax and Processing

4.2 The Si gnat ur eVal ue Element

The Si gnat ur eVal ue element contains the actual value of the digital signature; it is always encoded using base64 [MIME].

While we identify two Si gnat ur eMet hod algorithms, one mandatory and one optional to implement, user specified
algorithms may be used as well.

Schema Definition:

<el enent nane="Si ghat ur eVal ue" type="ds: Si gnat ureVal ueType"/ >
<conpl exType name="Si gnat ur eVal ueType" >
<si npl eCont ent >
<ext ensi on base="base64Bi nary" >
<attribute name="1d" type="ID"'" use="optional"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

DTD:

<! ELEMENT Si gnat ureVal ue (#PCDATA) >
<! ATTLI ST Si gnat ur eVal ue
Id ID #1 MPLI ED>

4.3 The Si gnedl nf o Element

The structure of Si gnedI nf o includes the canonicalization algorithm, a signature algorithm, and one or more references. The
Si gnedl nf o element may contain an optional ID attribute that will alow it to be referenced by other signatures and objects.

Si gnedI nf o does not include explicit signature or digest properties (such as calculation time, cryptographic device seria
number, etc.). If an application needs to associate properties with the signature or digest, it may include such information in a
Si gnat ur eProperti es element within an Cbj ect element.

Schema Definition:

<el enent name="Si gnedl nf 0" type="ds: Si gnedl nf oType"/>
<conpl exType name="Si gnedl nf oType" >
<sequence>
<el enent ref="ds: Canoni cal i zati onMet hod"/ >
<el enent ref="ds: Si gnatureMet hod"/>
<el ement ref="ds: Reference" maxCccurs="unbounded"/ >
</ sequence>
<attribute name="1d" type="ID" use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Si gnedl nfo (Canoni cal i zati onMet hod,
Si gnat ureMet hod, Reference+) >

<I ATTLI ST Si gnedl nfo
Id I D #| MPLI ED

4.3.1 The Canoni cal i zati onMet hod Element

Canoni cal i zat i onMet hod isarequired element that specifies the canonicalization algorithm applied to the Si gnedl nf o
element prior to performing signature calculations. This element uses the general structure for algorithms described in Algorithm

Identifiers and I mplementation Requirements (section 6.1). Implementations MUST support the REQUIRED canonicalization

http://www.w3.0rg/TR/xmldsig-core/ (13 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

algorithms.

Alternatives to the REQUIRED canonicalization algorithms (section 6.5), such as Canonical XML with Comments (section 6.5.1)
or aminimal canonicalization (such as CRLF and charset normalization), may be explicitly specified but are NOT REQUIRED.
Consequently, their use may not interoperate with other applications that do not support the specified algorithm (see XML
Canonicalization and Syntax Constraint Considerations, section 7). Security issues may also arise in the treatment of entity
processing and comments if non-XML aware canonicalization algorithms are not properly constrained (see section 8.2: Only
What is"Seen" Should be Signed).

Theway inwhich the Si gnedl nf o element is presented to the canonicalization method is dependent on that method. The
following applies to algorithms which process XML as nodes or characters:

o XML based canonicalization implementations MUST be provided with a[XPath] node-set originally formed from the

document containing the Si gnedl nf o and currently indicating the Si gnedl nf o, its descendants, and the attribute and
namespace nodes of Si gnedI nf o and its descendant elements.

» Text based canonicalization algorithms (such as CRLF and charset normalization) should be provided with the UTF-8
octets that represent the well-formed Signedinfo element, from the first character to the last character of the XML
representation, inclusive. Thisincludes the entire text of the start and end tags of the Signedinfo element aswell as all
descendant markup and character data (i.e., the text) between those tags. Use of text based canonicalization of Signedinfo is
NOT RECOMMENDED.

We recommend applications that implement a text-based instead of XML -based canonicalization -- such as resource constrained
apps -- generate canonicalized XML as their output serialization so as to mitigate interoperability and security concerns. For
instance, such an implementation SHOULD (at least) generate standalone XML instances [XML].

NOTE: The signature application must exercise great care in accepting and executing an arbitrary

Canoni cal i zat i onMet hod. For example, the canonicalization method could rewrite the URIs of the Ref er encesbeing
validated. Or, the method could massively transform Si gnedI nf o so that validation would aways succeed (i.e., converting it to
atrivial signature with aknown key over trivial data). Since Canoni cal i zat i onMet hod isinside Si gnedl nf o, inthe
resulting canonical form it could erase itself from Si gnedI nf o or modify the Si gnedl nf o element so that it appearsthat a
different canonicalization function was used! Thusa Si gnat ur e which appears to authenticate the desired data with the desired
key, Di gest Met hod, and Si gnat ur eMet hod, can be meaninglessif a capricious Canoni cal i zat i onMet hod is used.

Schema Definition:

<el enent name="Canoni cal i zati onMet hod" type="ds: Canoni cal i zati onMet hodType"/ >
<conpl exType nanme="Canoni cal i zati onMet hodType" m xed="true">

<sequence>
<any nanespace="##any" m nCccurs="0" maxQCccur s="unbounded"/ >
<l-- (0, unbounded) elenments from(1,1) nanmespace -->

</ sequence>
<attribute name="Algorithnt type="anyURlI" use="required"/>
</ conpl exType>

DTD:

<! ELEMENT Canoni cal i zati onMet hod (#PCDATA %kt hod. ANY;) * >
<I ATTLI ST Canoni cal i zati onMet hod
Al gorit hm CDATA #REQUI RED >

4.3.2 The Si gnat ur eMet hod Element

Si gnat ur eMet hod isarequired element that specifies the algorithm used for signature generation and validation. This
algorithm identifies all cryptographic functions involved in the signature operation (e.g. hashing, public key algorithms, MACs,
padding, etc.). This element uses the general structure here for algorithms described in section 6.1: Algorithm Identifiers and
Implementation Requirements. While there isa single identifier, that identifier may specify aformat containing multiple distinct
signature values.

http://www.w3.0rg/TR/xmldsig-core/ (14 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/1998/REC-xml-19980210#syntax
http://www.w3.org/TR/1998/REC-xml-19980210#dt-text
http://www.w3.org/TR/REC-xml#sec-rmd

XML-Signature Syntax and Processing

Schema Definition:

<el enent name="Si gnat ur eMet hod" type="ds: Si gnat ur eMet hodType"/ >
<conpl exType name="Si gnat ur eMet hodType" ni xed="true">
<sequence>
<el enment nane="HVACQut put Lengt h" m nCccurs="0"
t ype="ds: HVACQut put Lengt hType"/ >
<any nanespace="##ot her" m nCccurs="0" maxCccur s="unbounded"/ >
<l-- (0, unbounded) elenents from(1,1) external nanespace -->
</ sequence>
<attribute name="Algorithnt type="anyURlI" use="required"/>
</ conpl exType>

DTD:

<! ELEMENT Si gnat ur eMet hod (#PCDATA| HVACQut put Lengt h %vet hod. ANY;) * >
<I ATTLI ST Si gnat ur eMet hod
Al gori t hm CDATA #REQUI RED >

4.3.3 The Ref er ence Element

Ref er ence isan element that may occur one or more times. It specifies adigest algorithm and digest value, and optionally an
identifier of the object being signed, the type of the object, and/or alist of transformsto be applied prior to digesting. The
identification (URI) and transforms describe how the digested content (i.e., the input to the digest method) was created. The Type
attribute facilitates the processing of referenced data. For example, while this specification makes no requirements over external
data, an application may wish to signal that the referent isaMani f est . An optional 1D attribute permits a Ref er ence to be
referenced from elsewhere.

Schema Definition:

<el enent nane="Reference" type="ds: ReferenceType"/>
<conpl exType nane="Ref erenceType" >
<sequence>
<el ement ref="ds: Transforns” m nCccurs="0"/>
<el enent ref="ds: D gest Met hod"/ >
<el enent ref="ds: Di gest Val ue"/>
</ sequence>
<attribute name="1d" type="ID" use="optional"/>
<attribute nanme="URI" type="anyURI" use="optional "/>
<attribute name="Type" type="anyURl " use="optional "/>
</ conpl exType>

DTD:

<! ELEMENT Reference (Transfornms?, D gestMethod, D gestValue) >
<I ATTLI ST Reference

Id 1D #l MPLIED

URI CDATA #l MPLI ED

Type CDATA #l MPLI ED>

4.3.3.1 The URlI Attribute

The URI attribute identifies a data object using a URI-Reference, as specified by RFC2396 [URI]. The set of allowed characters
for URI attributesisthe same as for XML, namely [Unicode]. However, some Unicode characters are disallowed from URI
references including all non-ASCII characters and the excluded characters listed in RFC2396 [URI, section 2.4]. However, the

http://www.w3.0rg/TR/xmldsig-core/ (15 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

number sign (#), percent sign (%), and square bracket characters re-allowed in RFC 2732 [URI-Literal] are permitted. Disallowed
characters must be escaped as follows:
1. Each disallowed character is converted to [UTF-8] as one or more octets.
2. Any octets corresponding to a disallowed character are escaped with the URI escaping mechanism (that is, converted to
%HH, where HH is the hexadecimal notation of the octet value).
3. Theorigina character is replaced by the resulting character sequence.

XML signature applications MUST be able to parse URI syntax. We RECOMMEND they be able to dereference URIsin the
HTTP scheme. Dereferencing a URI in the HTTP scheme MUST comply with the Status Code Definitions of [HTTP] (e.g., 302,
305 and 307 redirects are followed to obtain the entity-body of a 200 status code response). Applications should also be cognizant
of the fact that protocol parameter and state information, (such as HTTP cookies, HTML device profiles or content negotiation),
may affect the content yielded by dereferencing a URI.

If aresourceisidentified by more than one URI, the most specific should be used (e.g.
http://www.w3.0rg/2000/06/interop-pressrel ease.html.en instead of http://www.w3.0rg/2000/06/interop-pressrel ease). (See the
Reference Validation (section 3.2.1) for afurther information on reference processing.)

If the URI attribute is omitted altogether, the receiving application is expected to know the identity of the object. For example, a
lightweight data protocol might omit this attribute given the identity of the object is part of the application context. This attribute
may be omitted from at most one Ref er ence in any particular Si gnedl nf o, or Mani f est .

The optional Type attribute contains information about the type of object being signed. Thisis represented as a URI. For example:

Type="htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#Obj ect "
Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#Mani f est "

The Type attribute applies to the item being pointed at, not its contents. For example, areference that identifiesan Obj ect
element containing aSi gnat ur ePr operti es elementisstill of type#Qbj ect . The type attribute is advisory. No validation
of the type information is required by this specification.

4.3.3.2 The Reference Processing Model

Note: XPath is RECOMMENDED. Signature applications need not conform to [X Path] specification in order to conform to this
specification. However, the X Path data model, definitions (e.g., node-sets) and syntax is used within this document in order to
describe functionality for those that want to process XML-as-XML (instead of octets) as part of signature generation. For those
that want to use these features, a conformant [X Path] implementation is one way to implement these features, but it is not
required. Such applications could use a sufficiently functional replacement to a node-set and implement only those X Path
expression behaviors REQUIRED by this specification. However, for simplicity we generally will use XPath terminology without
including this qualification on every point. Requirements over " XPath node-sets' can include a node-set functional equivalent.
Requirements over XPath processing can include application behaviors that are equivalent to the corresponding X Path behavior.

The data-type of the result of URI dereferencing or subsequent Transformsis either an octet stream or an X Path node-set.

The Tr ansf or s specified in this document are defined with respect to the input they require. The following is the default
signature application behavior:
« If the data object is an octet stream and the next transform requires a node-set, the signature application MUST attempt to
parse the octets yielding the required node-set via[XML] well-formed processing.

« If the data object is a node-set and the next transform requires octets, the signature application MUST attempt to convert
the node-set to an octet stream using Canonical XML [XML-C14N].

Users may specify alternative transforms that override these defaults in transitions between transforms that expect different
inputs. The final octet stream contains the data octets being secured. The digest algorithm specified by Di gest Met hod isthen
applied to these data octets, resulting inthe Di gest Val ue.

Unless the URI-Reference is a 'same-document' reference as defined in [URI, Section 4.2], the result of dereferencing the

URI-Reference MUST be an octet stream. In particular, an XML document identified by URI is not parsed by the signature
application unless the URI is a same-document reference or unless atransform that requires XML parsing is applied. (See
Transforms (section 4.3.3.1).)

http://www.w3.0rg/TR/xmldsig-core/ (16 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/2000/09/xmldsig#Object
http://www.w3.org/2000/09/xmldsig#Manifest
http://www.w3.org/TR/xpath#node-sets

XML-Signature Syntax and Processing

When afragment is preceded by an absolute or relative URI in the URI-Reference, the meaning of the fragment is defined by the
resource's MIME type. Even for XML documents, URI dereferencing (including the fragment processing) might be done for the
signature application by a proxy. Therefore, reference validation might fail if fragment processing is not performed in a standard
way (as defined in the following section for same-document references). Consequently, we RECOMMEND that the URI

attribute not include fragment identifiers and that such processing be specified as an additional XPath Transform.

When afragment is not preceded by a URI in the URI-Reference, XML signature applications MUST support the null URI and
barename X Pointer. We RECOMMEND support for the same-document XPointers "#xpointer(/)' and #xpointer(id('I1D"))" if the
application aso intends to support any canonicalization that preserves comments. (Otherwise URI="#foo" will automatically
remove comments before the canonicalization can even be invoked.) All other support for XPointersis OPTIONAL, especialy all
support for barename and other XPointersin external resources since the application may not have control over how the fragment
is generated (leading to interoperability problems and validation failures).

The following examples demonstrate what the URI attribute identifies and how it is dereferenced:

URI ="http://exanpl e. conf bar. xm "
Identifies the octets that represent the external resource 'http://example.com/bar.xml’, that is probably an XML document
given itsfile extension.

URI ="htt p://exanpl e. cont bar. xm #chapt er 1"
Identifies the element with ID attribute value 'chapterl’ of the external XML resource 'http://example.com/bar.xml’,
provided as an octet stream. Again, for the sake of interoperability, the element identified as ‘chapterl’ should be obtained
using an XPath transform rather than a URI fragment (barename X Pointer resolution in external resourcesis not
REQUIRED in this specification).

URI =""
Identifies the node-set (minus any comment nodes) of the XML resource containing the signature

URI =" #chapt er 1"
| dentifies a node-set containing the element with ID attribute value ‘chapterl’ of the XML resource containing the signature.

XML Signature (and its applications) modify this node-set to include the element plus all descendents including
namespaces and attributes -- but not comments.

4.3.3.3 Same-Document URI-References

Dereferencing a same-document reference MUST result in an X Path node-set suitable for use by Canonical XML [XML-C14N].

Specificaly, dereferencing anull URI (URI =" ") MUST result in an XPath node-set that includes every non-comment node of
the XML document containing the URI attribute. In afragment URI, the characters after the number sign (‘#) character conform
to the XPointer syntax [Xptr]. When processing an XPointer, the application MUST behave as if the root node of the XML

document containing the URI attribute were used to initialize the X Pointer evaluation context. The application MUST behave as
if the result of XPointer processing were a node-set derived from the resultant location-set as follows:

1. discard point nodes

2. replace each range node with all XPath nodes having full or partial content within the range
3. replace the root node with its children (if it isin the node-set)
4

. replace any element node E with E plus al descendants of E (text, comment, Pl, element) and all namespace and attribute
nodes of E and its descendant elements.

5. if the URI is not afull XPointer, then delete all comment nodes

The second to last replacement is necessary because X Pointer typically indicates a subtree of an XML document's parse tree using
just the element node at the root of the subtree, whereas Canonical XML treats a node-set as a set of nodes in which absence of
descendant nodes results in absence of their representative text from the canonical form.

The last step is performed for null URIs, barename XPointers and child sequence XPointers. It's necessary because when
[XML-C14N] is passed a node-set, it processes the node-set asis: with or without comments. Only when it's called with an octet
stream does it invoke its own XPath expressions (default or without comments). Therefore to retain the default behavior of
stripping comments when passed a node-set, they are removed in the last step if the URI is not afull XPointer. To retain
comments while selecting an element by an identifier ID, use the following full XPointer: URI =" #xpoi nter(id(' 1D))".
To retain comments while selecting the entire document, use the following full XPointer: URI =" #xpoi nter (/)" . This

http://www.w3.0rg/TR/xmldsig-core/ (17 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

XPointer contains a simple XPath expression that includes the root node, which the second to last step above replaces with all
nodes of the parse tree (all descendants, plus all attributes, plus al namespaces nodes).

4.3.3.4 The Tr ansf or n8 Element

The optional Tr ansf or s element contains an ordered list of Tr ansf or melements; these describe how the signer obtained
the data object that was digested. The output of each Tr ansf or mserves as input to the next Tr ansf or m The input to the first
Tr ansf or mistheresult of dereferencing the URI attribute of the Ref er ence element. The output from the last Tr ansf or m
istheinput for the Di gest Met hod agorithm. When transforms are applied the signer is not signing the native (original)
document but the resulting (transformed) document. (See Only What is Signed is Secure (section 8.1).)

Each Tr ansf or mconsists of an Al gor i t hmattribute and content parameters, if any, appropriate for the given algorithm. The
Al gor i t hmattribute value specifies the name of the algorithm to be performed, and the Tr ansf or mcontent provides
additional datato govern the algorithm's processing of the transform input. (See Algorithm Identifiers and Implementation

Requirements (section 6).)

As described in The Reference Processing Model (section 4.3.3.2), some transforms take an X Path node-set as input, while

others require an octet stream. If the actual input matches the input needs of the transform, then the transform operates on the
unaltered input. If the transform input requirement differs from the format of the actual input, then the input must be converted.

Some Tr ansf or ns may require explicit MIME type, charset (IANA registered "character set"), or other such information
concerning the data they are receiving from an earlier Tr ansf or mor the source data, although no Tr ansf or malgorithm
specified in this document needs such explicit information. Such data characteristics are provided as parameters to the

Tr ansf or malgorithm and should be described in the specification for the algorithm.

Examples of transformsinclude but are not limited to base64 decoding [MIME], canonicalization [XML-C14N], XPath filtering
[XPath], and XSLT [XSLT]. The generic definition of the Tr ansf or melement a so allows application-specific transform

algorithms. For example, the transform could be a decompression routine given by a Java class appearing as a base64 encoded
parameter to aJava Tr ansf or malgorithm. However, applications should refrain from using application-specific transforms if
they wish their signatures to be verifiable outside of their application domain. Transform Algorithms (section 6.6) defines the list
of standard transformations.

Schema Definition:

<el enment name="Transforns" type="ds: TransfornsType"/>
<conpl exType name="TransfornsType">
<sequence>
<el enent ref="ds: Transforni maxCccurs="unbounded"/ >
</ sequence>
</ conpl exType>

<el enent name="Transfornl' type="ds: Transforniype"/ >
<conpl exType nane="Tr ansfornlype" m xed="true">
<choi ce mi nCccurs="0" maxQccurs="unbounded" >

<any nanespace="##ot her" processContents="|ax"/>

<l-- (1,1) elenents from (0, unbounded) nanespaces -->
<el ement nane="XPat h" type="string"/>
</ choi ce>

<attribute nane="Al gorithnl type="anyURlI" use="required"/>
</ conpl exType>

DTD:
<! ELEMENT Transforns (Transformt)>
<!l ELEMENT Transf orm (#PCDATA| XPat h %r ansf orm ANY;)* >

<I ATTLI ST Transform

http://www.w3.0rg/TR/xmldsig-core/ (18 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing
Al gorithm CDATA #REQUI RED >
<! ELEMENT XPat h (#PCDATA) >
4.3.3.5 The Di gest Met hod Element

Di gest Met hod isarequired element that identifies the digest algorithm to be applied to the signed object. This element uses
the general structure here for algorithms specified in Algorithm Identifiers and Implementation Requirements (section 6.1).

If the result of the URI dereference and application of Transformsis an XPath node-set (or sufficiently functional replacement
implemented by the application) then it must be converted as described in the Reference Processing Model (section 4.3.3.2). If
the result of URI dereference and application of transforms is an octet stream, then no conversion occurs (comments might be
present if the Canonical XML with Comments was specified in the Transforms). The digest algorithm is applied to the data octets
of the resulting octet stream.

Schema Definition:

<el enent name="Di gest Met hod" type="ds: Di gest Met hodType"/ >
<conpl exType nane="Di gest Met hodType" ni xed="true">

<sequence>

<any nanespace="##ot her" processContents="Iax" m nCccurs="0"
maxCccur s="unbounded"/ >

</ sequence>

<attribute nane="Al gorithnt type="anyURlI" use="required"/>
</ conpl exType>

DTD:

<! ELEMENT Di gest Met hod (#PCDATA %kt hod. ANY;) * >
<I' ATTLI ST Di gest Met hod
Al gorithm CDATA #REQUI RED >

4.3.3.6 The Di gest Val ue Element

DigestValueis an element that contains the encoded value of the digest. The digest is always encoded using base64 [MIME].

Schema Definition:

<el enent name="Di gest Val ue" type="ds: D gest Val ueType"/ >
<si npl eType nanme="Di gest Val ueType" >

<restriction base="base64Bi nary"/>
</ si npl eType>

DTD:

<! ELEMENT Di gest Val ue (#PCDATA) >
<!-- base64 encoded di gest value -->

4.4 The Keyl nf o Element

Keyl nf o isan optional element that enables the recipient(s) to obtain the key needed to validate the signature. Keyl nf o may
contain keys, names, certificates and other public key management information, such asin-band key distribution or key
agreement data. This specification defines afew simple types but applications may extend those types or all together replace them
with their own key identification and exchange semantics using the XML namespace facility. [XML-ns] However, questions of

trust of such key information (e.g., its authenticity or strength) are out of scope of this specification and left to the application.
If Keyl nf o isomitted, the recipient is expected to be able to identify the key based on application context. Multiple declarations

http://www.w3.0rg/TR/xmldsig-core/ (19 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

within Key| nf o refer to the same key. While applications may define and use any mechanism they choose through inclusion of
elements from a different namespace, compliant versions MUST implement Key Val ue (section 4.4.2) and SHOULD implement

Ret ri eval Met hod (section 4.4.3).

The schema/DTD specifications of many of Keyl nf o's children (e.g., PGPDat a, SPKI Dat a, X509Dat a) permit their content
to be extended/complemented with elements from another namespace. This may be done only if it is safe to ignore these
extension elements while claiming support for the types defined in this specification. Otherwise, external elements, including
alternative structures to those defined by this specification, MUST be a child of Key| nf o. For example, should a complete
XML-PGP standard be defined, its root element MUST be a child of Keyl nf o. (Of course, new structures from external
namespaces can incorporate elements from the &dsi g; namespace viafeatures of the type definition language. For instance,
they can create aDTD that mixes their own and dsig qualified elements, or a schemathat permits, includes, imports, or derives
new types based on &dsi g; elements.)

The following list summarizes the Key | nf o typesthat are allocated an identifier in the &dsi g; namespace; these can be used
withinthe Ret ri eval Met hod Ty pe attribute to describe aremote Key| nf o structure.

« http://www.w3.0rg/2000/09/xmldsig#DSAKeyValue
« http://www.w3.0rg/2000/09/xmldsig#RSAK eyVaue
« http://www.w3.0rg/2000/09/xmldsi g#X509Data

« http://www.w3.0rg/2000/09/xmldsi g#PGPData

o http://www.w3.0rg/2000/09/xmldsi g#SPK I Data

« http://www.w3.0rg/2000/09/xmldsi g#M gmtData

In addition to the types above for which we define an XML structure, we specify one additional type to indicate abinary (ASN.1
DER) X.509 Certificate.

o http://www.w3.0rg/2000/09/xml dsi gtraw X 509Certificate

Schema Definition:

<el enent name="Keyl nf 0" type="ds: Keyl nf oType"/ >
<conpl exType nane="Keyl nf oType" mi xed="true">
<choi ce maxCccur s="unbounded" >
<el ement ref="ds: KeyNane"/>
<el enent ref="ds: KeyVal ue"/ >
<el enment ref="ds: Retrieval Met hod"/>
<el ement ref="ds: X509Dat a"/ >
<el ement ref="ds: PGPData"/>
<el ement ref="ds: SPKI Dat a"/ >
<el ement ref="ds: Mgnt Dat a"/ >
<any processCont ents="| ax" nanmespace="##other"/>
<l-- (1,1) elenents from (0, unbounded) nanespaces -->
</ choi ce>
<attribute nane="1d" type="1D" use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Keyl nf o (#PCDATA| KeyNane| KeyVal ue| Retri eval Met hod|
X509Dat a| PGPDat a| SPKI Dat a|] Mgnt Dat a %Keyl nf 0. ANY;) * >
<I ATTLI ST Keyl nfo
Id ID #l MPLIED >

4.4.1 The KeyName Element

The Key Nane element contains a string value (in which white space is significant) which may be used by the signer to
communicate akey identifier to the recipient. Typically, KeyNane contains an identifier related to the key pair used to sign the

http://www.w3.0rg/TR/xmldsig-core/ (20 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#DSAKeyValue
http://www.w3.org/2000/09/xmldsig#RSAKeyValue
http://www.w3.org/2000/09/xmldsig#X509Data
http://www.w3.org/2000/09/xmldsig#PGPData
http://www.w3.org/2000/09/xmldsig#SPKIData
http://www.w3.org/2000/09/xmldsig#MgmtData
http://www.w3.org/2000/09/xmldsig#rawX509Certificate

XML-Signature Syntax and Processing

message, but it may contain other protocol-related information that indirectly identifies akey pair. (Common uses of Key Nane
include simple string names for keys, akey index, a distinguished name (DN), an email address, etc.)

Schema Definition:

<el enent nane="KeyNane" type="string"/>

DTD:
<! ELEMENT KeyName (#PCDATA) >
4.4.2 The KeyVal ue Element

The KeyVal ue element contains asingle public key that may be useful in validating the signature. Structured formats for
defining DSA (REQUIRED) and RSA (RECOMMENDED) public keys are defined in Signature Algorithms (section 6.4). The
KeyVal ue element may include externally defined public keys values represented as PCDATA or element types from an
external namespace.

Schema Definition:

<el enment name="KeyVal ue" type="ds: KeyVal ueType"/ >
<conpl exType name="KeyVal ueType" m xed="true">
<choi ce>

<el enent ref="ds: DSAKeyVal ue"/ >

<el enent ref="ds: RSAKeyVal ue"/ >

<any nanespace="##ot her" processContents="I|ax"/>

</ choi ce>

</ conpl exType>

DTD:
<! ELEMENT KeyVal ue (#PCDATA| DSAKeyVal ue| RSAKeyVal ue %eyVal ue. ANY;)* >
4.4.2.1 The DSAKeyVal ue Element

Identifier

Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#DSAKeyVal ue"
(this can be used withinaRet ri eval Met hod or Ref er ence element to identify the referent's type)

DSA keys and the DSA signature algorithm are specified in [DSS]. DSA public key values can have the following fields:
P
a prime modulus meeting the [DSS] requirements

Q
an integer in the range 2**159 < Q < 2**160 which is a prime divisor of P-1
G
an integer with certain properties with respect to P and Q
Y
G**X mod P (where X is part of the private key and not made public)
J
(P-1)/Q
seed

aDSA prime generation seed
pgenCount er

http://www.w3.0rg/TR/xmldsig-core/ (21 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#DSAKeyValue

XML-Signature Syntax and Processing

aDSA prime generation counter

Parameter Jis available for inclusion solely for efficiency asit is calculatable from P and Q. Parameters seed and pgenCounter are
used in the DSA prime number generation algorithm specified in [DSS]. As such, they are optional but must either both be
present or both be absent. This prime generation algorithm is designed to provide assurance that aweak prime is not being used
and it yieldsaP and Q value. Parameters P, Q, and G can be public and common to a group of users. They might be known from
application context. As such, they are optional but P and Q must either both appear or both be absent. If dl of P, Q seed, and
pgenCount er are present, implementations are not required to check if they are consistent and are free to use either P and Qor
seed and pgenCount er . All parameters are encoded as base64 [MIME] values.

Arbitrary-length integers (e.g. "bignums" such as RSA moduli) are represented in XML as octet strings as defined by the
ds: Crypt oBi nary type.

Schema Definition:

<el enment name="DSAKeyVal ue" type="ds: DSAKeyVal ueType"/ >
<conpl exType name="DSAKeyVal ueType" >
<sequence>
<sequence m nCQccurs="0">
<el enent nane="P" type="ds: CryptoBi nary"/>
<el ement name="Q' type="ds: CryptoBinary"/>
</ sequence>
<el enment nane="G' type="ds: CryptoBi nary" m nCccurs="0"/>
<el enment name="Y" type="ds: CryptoBinary"/>
<el enent name="J" type="ds: CryptoBi nary" m nCccurs="0"/>
<sequence mni nCccurs="0">
<el enent name="Seed" type="ds: CryptoBi nary"/>
<el enent name="PgenCounter" type="ds: CryptoBi nary"/>
</ sequence>
</ sequence>
</ conpl exType>

DTD Definition:

<! ELEMENT DSAKeyValue ((P, Q?, G?, Y, J?, (Seed, PgenCounter)?) >
<! ELEMENT P (#PCDATA)
<! ELEMENT Q (#PCDATA) >
<! ELEMENT G (#PCDATA) >
<! ELEMENT Y (#PCDATA) >
<! ELEMENT J (#PCDATA)
<! ELEMENT Seed (#PCDATA) >

<!l ELEMENT PgenCount er (#PCDATA) >

\%

\Y

4.4.2.2 The RSAKeyVal ue Element

Identifier

Type="htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#RSAKeyVal ue"
(thiscan be used withinaRet r i eval Met hod or Ref er ence element to identify the referent's type)

RSA key values have two fields: Modulus and Exponent.

<RSAKeyVal ue>
<Mbdul us>xA7SEU+e0y QH5r nBkbCDN903aPl o 7HbP7t X6W0ocLZAt Nf yxSZDU16ksL6W
j ubaf OQNEpcWR3RAFs T7bCgnXPBe5ELh5u4VEY 19Me xk XRgr Mravzy BpVRgBUWUl V
5f oKShhrmbkt Ghy Ndy/ 6LpQRhDUDs TvK+g9Ucj 47es9AQI3U=
</ Modul us>
<Exponent >AQAB</ Exponent >

http://www.w3.0rg/TR/xmldsig-core/ (22 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#RSAKeyValue

XML-Signature Syntax and Processing

</ RSAKeyVal ue>

Arbitrary-length integers (e.g. "bignums" such as RSA moduli) are represented in XML as octet strings as defined by the
ds: Crypt oBi nary type.

Schema Definition:

<el enment name=" RSAKeyVal ue" type="ds: RSAKeyVal ueType"/ >
<conpl exType nanme="RSAKeyVal ueType" >
<sequence>
<el enment name="Modul us" type="ds: CryptoBi nary"/>
<el enent name="Exponent" type="ds: CryptoBi nary"/>
</ sequence>
</ conpl exType>

DTD Definition:

<! ELEMENT RSAKeyVal ue (Mdul us, Exponent) >
<! ELEMENT Mbodul us (#PCDATA) >
<!l ELEMENT Exponent (#PCDATA) >

443 The Retri eval Met hod Element

A Ret ri eval Met hod element within Key| nf o isused to convey areferenceto Keyl nf o information that is stored at
another location. For example, several signaturesin adocument might use a key verified by an X.509v3 certificate chain
appearing once in the document or remotely outside the document; each signature's Key | nf o can reference this chain using a
single Ret ri eval Met hod element instead of including the entire chain with a sequence of X509Certi fi cat e elements.

Ret ri eval Met hod uses the same syntax and dereferencing behavior as Ref er ence's URI (section 4.3.3.1) and The
Reference Processing Model (section 4.3.3.2) except that thereisno Di gest Met hod or Di gest Val ue child elements and
presence of the URI is mandatory.

Type isan optional identifier for the type of datato be retrieved. The result of dereferencingaRet ri eval Met hod

Ref er ence for al Keyl nf o types defined by this specification (section 4.4) with a corresponding XML structureisan XML
element or document with that element astheroot. Ther awx509Certi fi cat e Keyl nf o (for which thereisno XML
structure) returns a binary X509 certificate.

Scherma Definition

<el enment name="Retrieval Met hod" type="ds: Retrieval Met hodType"/ >
<conpl exType nane="Retri eval Met hodType" >

<sequence>

<el ement ref="ds: Transforns” m nCccurs="0"/>

</ sequence>

<attribute nanme="URI" type="anyURI"/>

<attribute name="Type" type="anyURI " use="optional "/>
</ conpl exType>

DTD

<! ELEMENT Retri eval Met hod (Transforns?) >
<! ATTLI ST Retri eval Met hod

URI CDATA #REQUI RED

Type CDATA #| MPLI ED >

4.4.4 The X509Dat a Element

http://www.w3.0rg/TR/xmldsig-core/ (23 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

Identifier

Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#X509Dat a "
(this can be used withinaRet r i eval Met hod or Ref er ence element to identify the referent's type)

An X509Dat a element within Keyl nf o contains one or more identifiers of keys or X509 certificates (or certificates identifiers
or arevocation list). The content of X509Dat a is:

1. At least one element, from the following set of element types; any of these may appear together or more than once iff (if
and only if) each instance describes or is related to the same certificate:

2. 0 The X509I ssuer Seri al element, which contains an X.509 issuer distinguished name/serial number pair that
SHOULD be compliant with RFC2253 [LDAP-DN],

o The X509Subj ect Nane element, which contains an X.509 subject distinguished name that SHOULD be
compliant with RFC2253 [LDAP-DN],

o The X509SKI element, which contains the base64 encoded plain (i.e. non-DER-encoded) value of a X509 V.3
SubjectKeyldentifier extension.

o TheX509Certi fi cat e element, which contains a base64-encoded [X509v3] certificate, and

o Elements from an external namespace which accompanies/complements any of the elements above.
o The X509CRL element, which contains a base64-encoded certificate revocation list (CRL) [X509v3].

Any X5091 ssuer Seri al , X509SKI , and X509Subj ect Nanme elements that appear MUST refer to the certificate or
certificates containing the validation key. All such elements that refer to a particular individual certificate MUST be grouped
inside asingle X509Dat a element and if the certificate to which they refer appears, it MUST also be in that X509Dat a
element.

Any X5091 ssuer Seri al , X509SKI , and X509Subj ect Name elements that relate to the same key but different certificates
MUST be grouped within asingle Key| nf o but MAY occur in multiple X509Dat a elements.

All certificates appearing in an X509Dat a element MUST relate to the validation key by either containing it or being part of a
certification chain that terminates in a certificate containing the validation key.

No ordering isimplied by the above constraints. The comments in the following instance demonstrate these constraints:

<Keyl nf 0>
<X609Data> <!-- two pointers to certificate-A -->
<X509I ssuer Seri al >
<X5091 ssuer Name>CN=TAMJRA Kent, OU=TRL, OC=I BM
L=Yamat o- shi, ST=Kanagawa, C=JP</ X509I ssuer Nane>
<X509Ser i al Nunber >12345678</ X509Ser i al Nunber >
</ X509I ssuer Seri al >
<X509SKI| >31d97bd7</ X509SKI >
</ X509Dat a>
<X509Dat a><!-- single pointer to certificate-B -->
<X509Subj ect Nane>Subj ect of Certificate B</ X509Subj ect Name>
</ X509Dat a>
<X609Data> <!-- certificate chain -->
<I--Signer cert, issuer CN=arbol CA OU=FVT, C=I BM C=US, serial 4-->
<X509Certificate>M | CXTCCA. . </ X509Certificate>
<l-- Internediate cert subject CN=arbol CA OULFVT, O=I BM C=US
i ssuer CN=tooti seCA OUEFVT, O=Bri dgepoi nt, C=US -->
<X509Certificate>M | CPzCCA. .. </ X509Certificate>
<l-- Root cert subject CN=tootiseCA OkEFVT, C=Bridgepoint, C=US -->
<X509Certificate>M | CSTCCA. .. </ X509Certificate>
</ X509Dat a>
</ Keyl nf 0>

Note, thereisno direct provision for a PK CS#7 encoded "bag" of certificates or CRLs. However, a set of certificates and CRLsS
can occur within an X509Dat a element and multiple X509Dat a elements can occur in aKey| nf o. Whenever multiple

http://www.w3.0rg/TR/xmldsig-core/ (24 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#SPKIData

XML-Signature Syntax and Processing

certificates occur in an X509Dat a element, at least one such certificate must contain the public key which verifies the signature.

Also, stringsin DNames (X5091 ssuer Seri al ,X509Subj ect Nane, and Key Nane if approriate) should be encoded as
follows:

» Consider the string as consisting of Unicode characters.

«» Escape occurrences of the following special characters by prefixing it with the "\" character:
o a"#" character occurring at the beginning of the string
0 one of the characters™,", "+", """, "\", "<", ">" or ";"

» Escape all occurrences of ASCII control characters (Unicode range \x00 - \x1f) by replacing them with "\" followed by a
two digit hex number showing its Unicode number.

« Escape any trailing white space by replacing "\ " with "\20".
« Sincea XML document logically consists of characters, not octets, the resulting Unicode string is finally encoded
according to the character encoding used for producing the physical representation of the XML document.

Schema Definition

<el enment name="X509Dat a" type="ds: X509Dat aType"/ >
<conpl exType nane="X509Dat aType" >
<sequence maxQccur s="unbounded" >
<choi ce>
<el ement nane="X509] ssuer Seri al " type="ds: X509| ssuer Seri al Type"/>
<el enment name="X509SKI " type="base64Bi nary"/>
<el enent name=" X509Subj ect Nane" type="string"/>
<el enment nane="X509Certificate" type="base64Bi nary"/>
<el enment name="X509CRL" type="base64Bi nary"/>
<any nanespace="##ot her" processContents="|ax"/>
</ choi ce>
</ sequence>
</ conpl exType>

<conpl exType name="X509I ssuer Seri al Type">
<sequence>
<el ement nane="X509| ssuer Nane" type="string"/>
<el enment name="X509Seri al Nunber" type="integer"/>
</ sequence>
</ conpl exType>

DTD

<! ELEMENT X509Data ((X509I ssuerSerial | X509SKI | X509Subject Nane |
X509Certificate | X509CRL) + 9%x509. ANY;) >

<! ELEMENT X509l ssuer Seri al (X5091 ssuer Nane, X509Seri al Nunber) >

<! ELEMENT X509I ssuer Nane (#PCDATA) >

<! ELEMENT X509Subj ect Nane (#PCDATA) >

<! ELEMENT X509Seri al Nunber (#PCDATA) >

<! ELEMENT X509SKI (#PCDATA) >

<! ELEMENT X509Certificate (#PCDATA) >

<! ELEMENT X509CRL (#PCDATA) >

<I-- Note, this DID and schema pernit X509Data to be enpty; this is
precluded by the text in Keylnfo Elenent (section 4.4) which states
that at |east one elenment fromthe dsig nanmespace shoul d be present
in the PG, SPKI, and X509 structures. This is easily expressed for
the ot her key types, but not for X509Data because of its rich
structure. -->

http://www.w3.0rg/TR/xmldsig-core/ (25 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

4.4.5 The PGPDat a Element

Identifier

Type="htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#PGPDat a "
(this can be used withinaRet r i eval Met hod or Ref er ence element to identify the referent's type)

The PGPDat a element within Key| nf o isused to convey information related to PGP public key pairs and signatures on such
keys. The PGPKey| D'svalueis abase64Binary sequence containing a standard PGP public key identifier as defined in [PGP,
section 11.2]. The PGPKeyPacket contains a base64-encoded Key Material Packet as defined in [PGP, section 5.5]. These
children element types can be complemented/extended by siblings from an external namespace within PGPDat a, or PGPDat a
can be replaced al together with an alternative PGP XML structure as a child of Keyl nf 0. PGPDat a must contain one
PGPKey | D and/or one PGPKeyPacket and 0 or more elements from an external namespace.

Schema Definition:

<el enent name="PGPDat a" type="ds: PGPDat aType"/ >
<conpl exType namne="PGPDat aType" >
<choi ce>
<sequence>
<el enent nane="PGPKeyl D' type="base64Bi nary"/>
<el enent name="PGPKeyPacket" type="base64Bi nary" m nCccurs="0"/>
<any nanespace="##ot her" processContents="Iax" m nCccurs="0"
maxCccur s="unbounded"/ >
</ sequence>
<sequence>
<el enent name="PGPKeyPacket" type="base64Bi nary"/>
<any nanespace="##ot her" processContents="1ax" m nQccurs="0"
maxCccur s="unbounded"/ >
</ sequence>
</ choi ce>
</ conpl exType>

DTD:

<! ELEMENT PGPData ((PGPKeyl D, PGPKeyPacket?) | (PGPKeyPacket) %PGPData.ANY;) >
<! ELEMENT PGPKeyPacket (#PCDATA) >
<! ELEMENT PGPKeyl D (#PCDATA) >

4.4.6 The SPKI Dat a Element

Identifier

Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#SPKI Dat a "
(this can be used withinaRet ri eval Met hod or Ref er ence element to identify the referent's type)

The SPKI Dat a element within Key| nf o isused to convey information related to SPKI public key pairs, certificates and other
SPKI data. SPKI Sexp is the base64 encoding of a SPKI1 canonical S-expression. SPKI Dat a must have at least one SPKI Sexp;
SPKI Sexp can be complemented/extended by siblings from an external namespace within SPKI Dat a, or SPKI Dat a can be
entirely replaced with an alternative SPKI XML structure as achild of Keyl nf o.

Schema Definition:

<el enment name="SPKI Dat a" type="ds: SPKI Dat aType"/ >
<conpl exType namne="SPKI Dat aType" >
<sequence maxQccur s="unbounded" >
<el enment name="SPKI Sexp" type="base64Bi nary"/>
<any nanespace="##ot her" processContents="1ax" m nCccurs="0"/>

http://www.w3.0rg/TR/xmldsig-core/ (26 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#PGPData
http://www.w3.org/2000/09/xmldsig#SPKIData

XML-Signature Syntax and Processing

</ sequence>
</ conpl exType>

DTD:

<! ELEMENT SPKI Data (SPKI Sexp %SPKI Data. ANY;) >
<! ELEMENT SPKI Sexp (#PCDATA) >

4.4.7 The Mgnt Dat a Element

Identifier

Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#Mynt Dat a "
(this can be used withinaRet r i eval Met hod or Ref er ence element to identify the referent's type)

The Mgnt Dat a element within Key| nf o isastring value used to convey in-band key distribution or agreement data. For
example, DH key exchange, RSA key encryption, etc. Use of thiselement is NOT RECOMMENDED. It provides a syntactic
hook where in-band key distribution or agreement data can be placed. However, superior interoperable child elements of
Keyl nf o for the transmission of encrypted keys and for key agreement are being specified by the W3C XML Encryption
Working Group and they should be used instead of Mgnt Dat a.

Schema Definition:

<el enent nane="Mymt Data" type="string"/>

DTD:
<! ELEMENT Mynt Data (#PCDATA) >

4.5 The Obj ect Element

Identifier

Type="htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#Obj ect "
(this can be used within aRef er ence element to identify the referent's type)

hj ect isanoptiona element that may occur one or more times. When present, this element may contain any data. The
Ohj ect element may include optional MIME type, 1D, and encoding attributes.

The Qbj ect 'sEncodi ng attributed may be used to provide a URI that identifies the method by which the object is encoded
(e.g., abinary file).

The M nmeType attribute is an optional attribute which describes the data within the Cbj ect (independent of its encoding). This
isastring with values defined by [MIME]. For example, if the Qbj ect contains base64 encoded PNG, the Encodi ng may be
specified as 'base64’ and the M meType as'image/png’. This attribute is purely advisory; no validation of theM neType
information is required by this specification. Applications which require normative type and encoding information for signature
validation should specify Tr ansf or s with well defined resulting types and/or encodings.

The Obj ect 's| d iscommonly referenced from aRef er ence in Si gnedl nf o, or Mani f est . Thiselement istypically used
for enveloping signatures where the object being signed isto be included in the signature element. The digest is calculated over
the entire Gbj ect element including start and end tags.

Note, if the application wishes to exclude the <Cbj ect > tags from the digest calculation the Ref er ence must identify the
actual data object (easy for XML documents) or atransform must be used to remove the Obj ect tags (likely where the data
object isnon-XML). Exclusion of the object tags may be desired for cases where one wants the signature to remain valid if the
data object is moved from inside a signature to outside the signature (or vice versa), or where the content of the Cbj ect isan
encoding of an original binary document and it is desired to extract and decode so as to sign the original bitwise representation.

Schema Definition:

http://www.w3.0rg/TR/xmldsig-core/ (27 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#MgmtData
http://www.w3.org/2000/09/xmldsig#Object
http://www.w3.org/Graphics/PNG/

XML-Signature Syntax and Processing

<el enent nane="(Cbhject" type="ds: Cbj ect Type"/>
<conpl exType nanme="0bj ect Type" m xed="true">
<sequence m nQccurs="0" maxCccur s="unbounded" >
<any namespace="##any" processContents="1ax"/>
</ sequence>
<attribute nane="1d" type="1D" use="optional"/>
<attribute name="M neType" type="string" use="optional"/>
<attribute name="Encodi ng" type="anyURI " use="optional "/>
</ conpl exType>

DTD:

<! ELEMENT Obj ect (#PCDATA| Si gnat ure| Si gnat ureProperti es| Mani f est %bj ect. ANY;)* >
<I ATTLI ST oj ect

Id 1D #lMLIED

M neType CDATA #| MPLI ED

Encodi ng CDATA #I MPLI ED >

5.0 Additional Signature Syntax

This section describes the optional to implement Mani f est and Si gnat ur ePr operti es elements and describes the
handling of XML processing instructions and comments. With respect to the elements Mani f est and

Si gnat ur ePr operti es thissection specifies syntax and little behavior -- it is |eft to the application. These elements can
appear anywhere the parent's content model permits; the Si gnat ur e content model only permits them within Obj ect .

5.1 The Mani f est Element

[dentifier

Type="http://ww. w3. or g/ 2000/ 09/ xm dsi g#Mani f est "
(this can be used within aRef er ence element to identify the referent’s type)

The Mani f est element provides alist of Ref er ences. The difference fromthelist in Si gnedl nf o isthat it is application
defined which, if any, of the digests are actually checked against the objects referenced and what to do if the object isinaccessible
or the digest comparefails. If aMani f est ispointed to from Si gnedI nf o, the digest over the Mani f est itself will be
checked by the core signature validation behavior. The digests within such aMani f est are checked at the application’s
discretion. If aMani f est isreferenced from another Mani f est , even the overall digest of thistwo level deep Mani f est
might not be checked.

Schema Definition:

<el enent name="Mani fest" type="ds: Mani f est Type"/ >
<conpl exType nane="Mani f est Type" >
<sequence>
<el enent ref="ds: Reference" maxCccurs="unbounded"/ >
</ sequence>
<attribute name="1d" type="1D" use="optional"/>
</ conpl exType>

DTD:
<! ELEMENT Mani fest (Reference+) >

<! ATTLI ST Mani f est
Id ID #l MPLIED >

http://www.w3.0rg/TR/xmldsig-core/ (28 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#Manifest

XML-Signature Syntax and Processing

5.2 The Si gnat ur eProperti es Element

Identifier

Type="htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#Si gnat ur ePr operti es"
(this can be used within aRef er ence element to identify the referent's type)

Additional information items concerning the generation of the signature(s) can be placed in aSi gnat ur ePr opert y element
(i.e., date/time stamp or the serial number of cryptographic hardware used in signature generation).

Schema Definition:

<el enent name="Si gnat ureProperties" type="ds: SignaturePropertiesType"/>
<conpl exType nane="Si gnat ur eProperti esType">
<sequence>
<el enent ref="ds: Si gnatureProperty” nmaxQccurs="unbounded"/>
</ sequence>
<attribute name="1d" type="ID"' use="optional"/>
</ conpl exType>

<el ement name="Si gnat ureProperty" type="ds: Si gnaturePropertyType"/>
<conpl exType nane="Si gnat ur ePropertyType" m xed="true">
<choi ce maxCccur s="unbounded" >
<any nanespace="##ot her" processContents="1|ax"/>
<l-- (1,1) elenents from (1, unbounded) nanespaces -->
</ choi ce>
<attribute name="Target" type="anyURl " use="required"/>
<attribute name="1d" type="ID" use="optional"/>
</ conpl exType>

DTD.

<! ELEMENT Si gnat ureProperties (SignatureProperty+) >
<I ATTLI ST Si gnat ureProperties
Id ID #I MPLIED >

<! ELEMENT Si gnat ureProperty (#PCDATA 9%Ssi gnat ur eProperty. ANY;)* >
<! ATTLI ST Si gnat ur eProperty

Target CDATA #REQUI RED

Id ID # MPLIED >

5.3 Processing Instructions in Signature Elements

No XML processing instructions (PIs) are used by this specification.

Note that Pls placed inside Si gnedI nf o by an application will be signed unlessthe Canoni cal i zat i onMet hod agorithm
discardsthem. (Thisistrue for any signed XML content.) All of the Canoni cal i zat i onMet hodsidentified within this
specification retain Pls. When a Pl is part of content that is signed (e.g., within Si gnedl nf o or referenced XML documents)
any change to the Pl will obviously result in a signature failure.

5.4 Comments in Signature Elements

XML comments are not used by this specification.

Note that unless Canoni cal i zat i onMet hod removes comments within Si gnedl nf o or any other referenced XML (which
[XML-C14N] does), they will be signed. Consequently, if they are retained, a change to the comment will cause a signature
failure. Similarly, the XML signature over any XML datawill be sensitive to comment changes unless a comment-ignoring

http://www.w3.0rg/TR/xmldsig-core/ (29 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#SignatureProperties

XML-Signature Syntax and Processing

canonicalization/transform method, such as the Canonical XML [XML-C14N], is specified.

6.0 Algorithms

This section identifies algorithms used with the XML digital signature specification. Entries contain the identifier to be used in
Si gnat ur e elements, areference to the formal specification, and definitions, where applicable, for the representation of keys
and the results of cryptographic operations.

6.1 Algorithm Identifiers and Implementation Requirements

Algorithms are identified by URIs that appear as an attribute to the element that identifies the algorithms role (Di gest Met hod,
Transf orm Si gnat ur eMet hod, or Canoni cal i zat i onMet hod). All algorithms used herein take parameters but in
many cases the parameters are implicit. For example, aSi gnat ur eMet hod isimplicitly given two parameters: the keying info
and the output of Canoni cal i zat i onMet hod. Explicit additional parametersto an algorithm appear as content elements
within the algorithm role element. Such parameter elements have a descriptive element name, which is frequently algorithm
specific, and MUST be in the XML Signature namespace or an algorithm specific namespace.

This specification defines a set of algorithms, their URIs, and requirements for implementation. Requirements are specified over
implementation, not over requirements for signature use. Furthermore, the mechanism is extensible; alternative algorithms may be
used by signature applications.

Digest
1. Required SHA1
http://www.w3.0rg/2000/09/xml dsi g#shal
Encoding
1. Required base64
http://www.w3.0rg/2000/09/xml dsi g#tbase64
MAC
1. Required HMAC-SHA1
http://www.w3.0rg/2000/09/xml dsi g#hmac-shal
Signature

1. Required DSAwithSHA1 (DSS)
http://www.w3.0rg/2000/09/xml dsi g#dsa-shal

2. Recommended RSAwithSHA 1
http://www.w3.0rg/2000/09/xml dsi g#rsa-shal

Canonicalization

1. Required Canonical XML (omits comments)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

2. Recommended Canonical XML with Comments
http://www.w3.org/ TR/2001/REC-xml-¢c14n-20010315#WithComments

Transform
1. Optional XSLT
http://www.w3.org/TR/1999/REC-x5t-19991116

2. Recommended X Path
http://www.w3.org/TR/1999/REC-xpath-19991116

3. Required Enveloped Signature*
http://www.w3.0rg/2000/09/xmldsi g#tenvel oped-signature

* The Enveloped Signature transform removes the Si gnat ur e element from the calculation of the signature when the signature
iswithin the content that it is being signed. ThisMAY be implemented viathe RECOMMENDED X Path specification specified
in 6.6.4: Enveloped Signature Transform; it MUST have the same effect as that specified by the XPath Transform.

http://www.w3.org/TR/xmldsig-core/ (30 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2000/09/xmldsig#enveloped-signature

XML-Signature Syntax and Processing

6.2 Message Digests

Only one digest algorithm is defined herein. However, it is expected that one or more additional strong digest algorithms will be
developed in connection with the US Advanced Encryption Standard effort. Use of MD5 [MD5] isNOT RECOMMENDED

because recent advancesin cryptanalysis have cast doubt on its strength.
6.2.1 SHA-1

Identifier:
http://www.w3.0rg/2000/09/xml dsi g#shal

The SHA-1 algorithm [SHA-1] takes no explicit parameters. An example of an SHA-1 DigestAlg element is:

<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >

A SHA-1 digest is a 160-bit string. The content of the DigestValue element shall be the base64 encoding of this bit string viewed
as a 20-octet octet stream. For example, the DigestVaue element for the message digest:

A9993E36 4706816A BA3E2571 7850C26C 9CDODB9D
from Appendix A of the SHA-1 standard would be:

<Di gest Val ue>qZk+NkcGgWj6Pi VxeFDChJz(Q2J0=</ Di gest Val ue>

6.3 Message Authentication Codes

MAC agorithms take two implicit parameters, their keying material determined from Key| nf o and the octet stream output by
Canoni cal i zat i onMet hod. MACs and signature algorithms are syntactically identical but aMAC implies a shared secret

key.
6.3.1 HMAC

Identifier:
http://www.w3.0rg/2000/09/xml dsi g¢thmac-shal

The HMAC algorithm (RFC2104 [HMAC]) takes the truncation length in bits as a parameter; if the parameter is not specified
then al the bits of the hash are output. An example of an HMAC Si gnat ur eMet hod element:

<Si gnat ureMet hod Al gorithnm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#hmac- shal" >
<HMACCut put Lengt h>128</ HMACQut put Lengt h>
</ Si gnat ur eMet hod>

The output of the HMAC agorithm is ultimately the output (possibly truncated) of the chosen digest algorithm. This value shall
be base64 encoded in the same straightforward fashion as the output of the digest agorithms. Example: the SignatureValue
element for the HMAC-SHA1 digest

9294727A 3638BB1C 13F48EF8 158BFC9D
from the test vectorsin [HMAC] would be

<Si gnat ur eVal ue>kpRyej Y4uxwT9l 74FYv8nQ==</ Si gnat ur eVal ue>

Schema Definition:

<si npl eType nanme="HVACQut put Lengt hType" >
<restriction base="integer"/>

http://www.w3.0rg/TR/xmldsig-core/ (31 of 46) [8/12/2002 7:06:44 PM]

http://www.ietf.org/rfc/rfc1321.txt
http://www.w3.org/2000/09/xmldsig#sha1
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.ietf.org/rfc/rfc2104.txt

XML-Signature Syntax and Processing

</ si npl eType>
DTD:
<! ELEMENT HVACQut put Lengt h (#PCDATA) >

6.4 Signature Algorithms

Signature algorithms take two implicit parameters, their keying material determined from Key| nf o and the octet stream output
by Canoni cal i zat i onMet hod. Signature and MAC algorithms are syntactically identical but a signature implies public key

cryptography.
6.4.1 DSA

Identifier:
http://www.w3.0rg/2000/09/xml dsi g#dsa-shal

The DSA algorithm [DSS] takes no explicit parameters. An example of aDSA Si gnat ur eMet hod element is:

<Si gnat ureMet hod Al gorithnme"http://ww. w3. or g/ 2000/ 09/ xm dsi g#dsa- shal"/ >

The output of the DSA agorithm consists of apair of integers usually referred by the pair (r, s). The signature value consists of
the base64 encoding of the concatenation of two octet-streams that respectively result from the octet-encoding of the valuesr and
sin that order. Integer to octet-stream conversion must be done according to the I20SP operation defined in the REC 2437
[PKCS1] specification with al parameter equal to 20. For example, the SignatureVaue element for aDSA signature (r , s) with
values specified in hexadecimal:

8BACLAB6 6410435C B7181F95 B16AB97C 92B341C0
41E2345F 1F56DF24 58F426D1 55B4BA2D B6DCD8C3

r
S

from the example in Appendix 5 of the DSS standard would be

<Si gnat ur eVval ue>
i Bwat QLY 3GB+VsWy5f JKz(QcBB4j Rf H1bf JFj 0Jt FVt Lot tt zYyA==</ Si gnat ur eVal ue>

6.4.2 PKCS1 (RSA-SHA1)

Identifier:
http://www.w3.0rg/2000/09/xml dsi g#rsa-shal

The expression "RSA algorithm" as used in this draft refers to the RSASSA-PKCS1-v1 5 algorithm described in RFC 2437
[PKCS1]. The RSA agorithm takes no explicit parameters. An example of an RSA SignatureMethod element is:

<Si gnat ureMet hod Al gorithnme"http://ww. w3. or g/ 2000/ 09/ xm dsi g#r sa- shal"/ >

The Si gnat ur eVal ue content for an RSA signature is the base64 [MIME] encoding of the octet string computed as per RFC
2437 [PKCSI, section 8.1.1: Signature generation for the RSASSA-PKCS1-v1 5 signature scheme]. As specified in the
EMSA-PKCS1-V1 5-ENCODE function RFC 2437 [PKCS1, section 9.2.1], the value input to the signature function MUST
contain a pre-pended algorithm object identifier for the hash function, but the availability of an ASN.1 parser and recognition of
OIDs s not required of asignature verifier. The PKCS#1 v1.5 representation appears as.

CRYPT (PAD (ASN.1 (O D, DI GEST (data))))
Note that the padded ASN.1 will be of the following form:

01| FF* | 00 | prefix | hash

http://www.w3.0rg/TR/xmldsig-core/ (32 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.ietf.org/rfc/rfc2437.txt
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt

XML-Signature Syntax and Processing

where"|" is concatenation, "01", "FF", and "00" are fixed octets of the corresponding hexadecimal value, "hash" isthe SHA1
digest of the data, and "prefix" isthe ASN.1 BER SHA1 algorithm designator prefix required in PKCS1 [RFC 2437], that is,

hex 30 21 30 09 06 05 2B OE 03 02 1A 05 00 04 14

This prefix isincluded to make it easier to use standard cryptographic libraries. The FF octet MUST be repeated the maximum
number of times such that the value of the quantity being CRY PTed is one octet shorter than the RSA modulus.

The resulting base64 [MIME] string is the value of the child text node of the SignatureV aue element, e.g.

<Si gnat ur eVal ue>
| Wj xQ Ur cXBYoCei 4Qxj WW9Kg8D3p9t | WbT4t 0/ gy TE966391 nOFZFY2/ r vP+/ bMI01EAr nKZs R5VVBr wo Pxw=
</ Si gnat ur eVal ue>

6.5 Canonicalization Algorithms

If canonicalization is performed over octets, the canonicalization algorithms take two implicit parameters: the content and its
charset. The charset is derived according to the rules of the transport protocols and media types (e.g, RFC2376 [XML-MT]

defines the media types for XML). Thisinformation is necessary to correctly sign and verify documents and often requires careful
server side configuration.

Various canonicalization algorithms require conversion to [UTF-8].The two algorithms below understand at least [UTF-8] and
[UTF-16] asinput encodings. We RECOMMEND that externally specified algorithms do the same. Knowledge of other
encodingsis OPTIONAL.

Various canonicalization algorithms transcode from a non-Unicode encoding to Unicode. The two algorithms below perform text
normalization during transcoding [NFC, NFC-Corrigendum]. We RECOMMEND that externally specified canonicalization
algorithms do the same. (Note, there can be ambiguities in converting existing charsets to Unicode, for an example see the XML
Japanese Profile [XML-Japanese] Note.)

6.5.1 Canonical XML

Identifier for REQUIRED Canonical XML (omits comments):
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

Identifier for Canonical XML with Comments:
http://www.w3.0rg/TR/2001/REC-xml-¢c14n-20010315#WithComments

An example of an XML canonicalization element is:
<Canoni cal i zat i onMet hod
Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315"/ >

The normative specification of Canonical XML is[XML-C14N]. The algorithm is capable of taking asinput either an octet
stream or an XPath node-set (or sufficiently functional alternative). The algorithm produces an octet stream as output. Canonical
XML iseasily parameterized (via an additional URI) to omit or retain comments.

6.6 Tr ansf or mAlgorithms

A Tr ansf or malgorithm has asingle implicit parameter: an octet stream from the Ref er ence or the output of an earlier
Transform

Application devel opers are strongly encouraged to support all transforms listed in this section as RECOMMENDED unless the
application environment has resource constraints that would make such support impractical. Compliance with this
recommendation will maximize application interoperability and libraries should be available to enable support of these transforms
in applications without extensive devel opment.

6.6.1 Canonicalization

http://www.w3.org/TR/xmldsig-core/ (33 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

XML-Signature Syntax and Processing

Any canonicalization algorithm that can be used for Canoni cal i zat i onMet hod (such asthosein Canonicalization
Algorithms (section 6.5)) can beused asaTr ansf or m

6.6.2 Baseb64

Identifiers:
http://www.w3.0rg/2000/09/xml dsi g#base64

The normative specification for base64 decoding transformsis [MIME]. The base64 Tr ansf or melement has no content. The

input is decoded by the algorithms. This transform is useful if an application needs to sign the raw data associated with the
encoded content of an el ement.

This transform requires an octet stream for input. If an XPath node-set (or sufficiently functional alternative) is given asinput,
then it is converted to an octet stream by performing operations logically equivalent to 1) applying an XPath transform with
expressionsel f: : text (), then 2) taking the string-value of the node-set. Thus, if an XML element isidentified by a
barename X Pointer in the Ref er ence URI, and its content consists solely of base64 encoded character data, then this transform
automatically strips away the start and end tags of the identified element and any of its descendant el ements as well as any
descendant comments and processing instructions. The output of this transform is an octet stream.

6.6.3 XPath Filtering

Identifier:
http://www.w3.org/ TR/1999/REC-xpath-19991116

The normative specification for XPath expression evaluation is [XPath]. The XPath expression to be evaluated appears as the
character content of a transform parameter child element named XPat h.

The input required by thistransform is an XPath node-set. Note that if the actual input is an XPath node-set resulting from a null
URI or barename X Pointer dereference, then comment nodes will have been omitted. If the actual input is an octet stream, then
the application MUST convert the octet stream to an XPath node-set suitable for use by Canonical XML with Comments. (A
subsequent application of the REQUIRED Canonical XML algorithm would strip away these comments.) In other words, the
input node-set should be equivalent to the one that would be created by the following process:

1. Initialize an XPath evaluation context by setting the initial node equal to the input XML document's root node, and set the
context position and sizeto 1.

2. Evauatethe XPath expression(//. | // @ | //nanmespace::*)

The evaluation of this expression includes all of the document's nodes (including comments) in the node-set representing the octet
stream.

The transform output is also an XPath node-set. The XPath expression appearing in the XPat h parameter is evaluated once for
each node in the input node-set. The result is converted to a boolean. If the boolean is true, then the node is included in the output
node-set. If the boolean is false, then the node is omitted from the output node-set.

Note: Even if the input node-set has had comments removed, the comment nodes still exist in the underlying parse tree and can
separate text nodes. For example, the markup <e>Hel | o, <!-- comrent -->worl d! </ e> containstwo text nodes.
Therefore, the expressionsel f::text()[string()="Hello, world!"] would fail. Should this problem arisein the
application, it can be solved by either canonicalizing the document before the X Path transform to physically remove the
comments or by matching the node based on the parent element’s string value (e.g. by using the expression
self::text()[string(parent::e)="Hello, world!"]).

The primary purpose of this transform is to ensure that only specifically defined changes to the input XML document are
permitted after the signature is affixed. Thisis done by omitting precisely those nodes that are alowed to change once the
signature is affixed, and including all other input nodes in the output. It is the responsibility of the X Path expression author to
include all nodes whose change could affect the interpretation of the transform output in the application context.

An important scenario would be a document requiring two enveloped signatures. Each signature must omit itself from its own
digest calculations, but it is also necessary to exclude the second signature element from the digest cal culations of the first
signature so that adding the second signature does not break the first signature.

http://www.w3.0rg/TR/xmldsig-core/ (34 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/TR/1999/REC-xpath-19991116

XML-Signature Syntax and Processing

The XPath transform establishes the following evaluation context for each node of the input node-set:
« A context node equal to a node of the input node-set.
« A context position, initialized to 1.
« A context size, initialized to 1.
« Alibrary of functions equal to the function set defined in [XPath] plus a function named here.

« A set of variable bindings. No means for initializing these is defined. Thus, the set of variable bindings used when
evaluating the X Path expression is empty, and use of avariable reference in the XPath expression resultsin an error.

» The set of namespace declarations in scope for the X Path expression.

Asaresult of the context node setting, the X Path expressions appearing in this transform will be quite similar to those used in
used in [XSLT], except that the size and position are always 1 to reflect the fact that the transform is automatically visiting every

node (in XSL T, one recursively callsthe command appl y- t enpl at es to visit the nodes of the input tree).
Thefunction her e() isdefined asfollows:
Function: node-set herg()

The her e function returns a node-set containing the attribute or processing instruction node or the parent element of the text node

that directly bears the XPath expression. This expression resultsin an error if the containing X Path expression does not appear in
the same XML document against which the XPath expression is being eval uated.

As an example, consider creating an enveloped signature (a Si gnat ur e element that is a descendant of an element being
signed). Although the signed content should not be changed after signing, the elements within the Si gnat ur e element are
changing (e.g. the digest value must be put inside the Di gest Val ue and the Si gnat ur eVal ue must be subsequently
calculated). One way to prevent these changes from invalidating the digest value in Di gest Val ue isto add an XPath

Tr ansf or mthat omitsal Si gnat ur e elements and their descendants. For example,

<Document >

<S| gnature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gnedl nf 0>

<Ref erence URI ="">
<Tr ansf or ns>
<Transform Al gorithnm="http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116" >
<XPat h xm ns: dsi g="&dsi g; ">
not (ancestor-or-sel f::dsig: Signature)
</ XPat h>
</ Tr ansf or n»
</ Tr ansf or ns>
<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<Di gest Val ue></ Di gest Val ue>
</ Ref er ence>
</ Si gnedI nf 0>
<Si gnat ur eVal ue></ Si gnat ur eVal ue>
</ Si gnat ur e>

</ Docunment >

Dueto the null Ref er ence URI in this example, the XPath transform input node-set contains al nodes in the entire parse tree
starting at the root node (except the comment nodes). For each node in this node-set, the node is included in the output node-set
except if the node or one of its ancestors has atag of Si gnat ur e that isin the namespace given by the replacement text for the
entity &dsi g; .

A more elegant solution uses the her e function to omit only the Si gnat ur e containing the X Path Transform, thus allowing
enveloped signatures to sign other signatures. In the example above, use the XPat h element:

http://www.w3.org/TR/xmldsig-core/ (35 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

<XPat h xm ns: dsi g="&dsi g; ">

count (ancestor-or-self::dsig:Signature |
here()/ancestor::dsig: Signature[l]) >

count (ancestor-or-sel f::dsig: Si gnat ure) </ XPat h>

Since the X Path equality operator converts node sets to string values before comparison, we must instead use the XPath union
operator (]). For each node of the document, the predicate expression istrueif and only if the node-set containing the node and its
Si gnat ur e element ancestors does not include the enveloped Si gnat ur e element containing the X Path expression (the union
does not produce a larger set if the enveloped Si gnat ur e element isin the node-set given by

ancestor-or-sel f:: Signature).

6.6.4 Enveloped Signature Transform

Identifier:
http://www.w3.0rg/2000/09/xml dsi g#envel oped-signature

An enveloped signature transform T removes the whole Si gnat ur e element containing T from the digest calculation of the

Ref er ence element containing T. The entire string of characters used by an XML processor to match the Si gnat ur e with the
XML production el enent isremoved. The output of the transform is equivalent to the output that would result from replacing T
with an XPath transform containing the following XPat h parameter element:

<XPat h xm ns: dsi g="&dsig; ">

count (ancestor-or-self::dsig: Signature |
here()/ancestor::dsig: Signature[l]) >

count (ancestor-or-sel f::dsig: Si gnat ure) </ XPat h>

The input and output requirements of this transform are identical to those of the XPath transform, but may only be applied to a
node-set from its parent XML document. Note that it is not necessary to use an X Path expression evaluator to create this
transform. However, this transform MUST produce output in exactly the same manner as the X Path transform parameterized by
the X Path expression above.

6.6.5 XSLT Transform

Identifier:
http://www.w3.0org/TR/1999/REC-xst-19991116

The normative specification for XSL Transformationsis [XSLT]. Specification of a namespace-qualified stylesheet element,
which MUST be the sole child of the Tr ansf or melement, indicates that the specified style sheet should be used. Whether this
instantiates in-line processing of local XSLT declarations within the resource is determined by the XSLT processing model; the
ordered application of multiple stylesheet may require multiple Tr ansf or nms. No specia provision is made for the identification
of aremote stylesheet at a given URI because it can be communicated viaan xsl : i ncl ude or xsl : i nport withinthe

st yl esheet child of the Tr ansf orm

This transform requires an octet stream asinput. If the actual input is an X Path node-set, then the signature application should
attempt to convert it to octets (apply Canonical XML]) as described in the Reference Processing Model (section 4.3.3.2).

The output of thistransform is an octet stream. The processing rules for the XSL style sheet or transform element are stated in the
XSLT specification [XSLT]. We RECOMMEND that XSLT transform authors use an output method of xm for XML and

HTML. As XSLT implementations do not produce consistent serializations of their output, we further RECOMMEND inserting a
transform after the XSLT transform to canonicalize the output. These steps will help to ensure interoperability of the resulting
signatures among applications that support the XSL T transform. Note that if the output is actually HTML, then the result of these

stepsislogically equivalent [XHTML].

7.0 XML Canonicalization and Syntax Constraint
Considerations

Digital signatures only work if the verification calculations are performed on exactly the same bits as the signing calculations. If

http://www.w3.org/TR/xmldsig-core/ (36 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets
http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets

XML-Signature Syntax and Processing

the surface representation of the signed data can change between signing and verification, then some way to standardize the
changeabl e aspect must be used before signing and verification. For example, even for simple ASCII text there are at |east three
widely used line ending sequences. If it is possible for signed text to be modified from one line ending convention to another
between the time of signing and signature verification, then the line endings need to be canonicalized to a standard form before
signing and verification or the signatures will break.

XML is subject to surface representation changes and to processing which discards some surface information. For this reason,
XML digital signatures have a provision for indicating canonicalization methods in the signature so that a verifier can use the
same canonicalization as the signer.

Throughout this specification we distinguish between the canonicalization of a Si gnat ur e element and other signed XML data
objects. It ispossible for an isolated XML document to be treated asiif it were binary data so that no changes can occur. In that
case, the digest of the document will not change and it need not be canonicalized if it is signed and verified as such. However,
XML that isread and processed using standard XML parsing and processing techniques is frequently changed such that some of
its surface representation information islost or modified. In particular, thiswill occur in many casesfor the Si gnat ur e and
enclosed Si gnedl nf o elements since they, and possibly an encompassing XML document, will be processed as XML.

Similarly, these considerations apply to Mani f est , Qbj ect , and Si gnat ur ePr oper ti es elementsif those elements have
been digested, their Di gest Val ue isto be checked, and they are being processed as XML.

The kinds of changesin XML that may need to be canonicalized can be divided into four categories. There are those related to the
basic [XML], asdescribed in 7.1 below. There are those related to [DOM], [SAX], or similar processing as described in 7.2

below. Third, thereisthe possibility of coded character set conversion, such as between UTF-8 and UTF-16, both of which all
[XML] compliant processors are required to support, which is described in the paragraph immediately below. And, fourth, there

are changes that related to namespace declaration and XML namespace attribute context as described in 7.3 below.

Any canonicalization algorithm should yield output in a specific fixed coded character set. All canonicalization algorithms
identified in this document use UTF-8 (without a byte order mark (BOM)) and do not provide character normalization. We
RECOMMEND that signature applications create XML content (Si gnat ur e elements and their descendents/content) in
Normalization Form C [NFC, NFC-Corrigendum] and check that any XML being consumed isin that form as well; (if not,
signatures may consequently fail to validate). Additionally, none of these algorithms provide data type normalization.
Applications that normalize data types in varying formats (e.g., (true, false) or (1,0)) may not be able to validate each other's
signatures.

7.1 XML 1.0, Syntax Constraints, and Canonicalization

XML 1.0 [XML] defines an interface where a conformant application reading XML is given certain information from that XML
and not other information. In particular,

1. line endings are normalized to the single character #xA by dropping #xD charactersif they are immediately followed by a
#xA and replacing them with #xA in all other cases,

missing attributes declared to have default values are provided to the application asif present with the default value,
character references are replaced with the corresponding character,
entity references are replaced with the corresponding declared entity,
attribute values are normalized by
1. replacing character and entity references as above,

2. replacing occurrences of #x9, #xA, and #xD with #x20 (space) except that the sequence #xD#xA isreplaced by a
single space, and

3. if the attribute is not declared to be CDATA, stripping al leading and trailing spaces and replacing all interior runs of
spaces with a single space.

a b~ w N

Note that items (2), (4), and (5.3) depend on the presence of a schema, DTD or similar declarations. The Si gnat ur e element
typeislaxly schemavalid [XML-schema], consequently external XML or even XML within the same document as the signature
may be (only) well-formed or from another namespace (where permitted by the signature schema); the noted items may not be
present. Thus, a signature with such content will only be verifiable by other signature applications if the following syntax
constraints are observed when generating any signed material including the Si gnedl nf o element:

1. attributes having default values be explicitly present,

http://www.w3.0rg/TR/xmldsig-core/ (37 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax

XML-Signature Syntax and Processing

2. dl entity references (except "amp”, "It", "gt", "apos", "quot”, and other character entities not representable in the encoding
chosen) be expanded,

3. attribute value white space be normalized

7.2 DOM/SAX Processing and Canonicalization

In addition to the canonicalization and syntax constraints discussed above, many XML applications use the Document Object
Model [DOM] or the Simple API for XML [SAX]. DOM maps XML into atree structure of nodes and typically assumesit will
be used on an entire document with subsequent processing being done on thistree. SAX converts XML into a series of events
such as a start tag, content, etc. In either case, many surface characteristics such as the ordering of attributes and insignificant
white space within start/end tagsis lost. In addition, namespace declarations are mapped over the nodes to which they apply,
losing the namespace prefixes in the source text and, in most cases, |0sing where namespace declarations appeared in the original
instance.

If an XML Signature isto be produced or verified on a system using the DOM or SAX processing, a canonical method is needed
to serialize the relevant part of a DOM tree or sequence of SAX events. XML canonicalization specifications, such as
[XML-C14N], are based only on information which is preserved by DOM and SAX. For an XML Signature to be verifiable by an
implementation using DOM or SAX, not only must the XML 1.0 syntax constraints given in the previous section be followed but
an appropriate XML canonicalization MUST be specified so that the verifier can re-serialize DOM/SAX mediated input into the
same octet stream that was signed.

7.3 Namespace Context and Portable Signatures

In [XPath] and consequently the Canonical XML data model an element has namespace nodes that correspond to those
declarations within the element and its ancestors:

"Note: An element E has namespace nodes that represent its namespace declarations as well as any hamespace
declarations made by its ancestors that have not been overridden in E's declarations, the default namespaceif itis
non-empty, and the declaration of the prefix xm ." [XML-C14N]

When serializing aSi gnat ur e element or signed XML data that's the child of other elements using these data models, that

Si gnat ur e element and its children, may contain namespace declarations from its ancestor context. In addition, the Canonical
XML and Canonical XML with Comments algorithms import all xml namespace attributes (such asxmni : | ang) from the nearest
ancestor in which they are declared to the apex node of canonicalized XML unlessthey are already declared at that node. This
may frustrate the intent of the signer to create a signature in one context which remains valid in another. For example, given a
signature which isachild of B and a grandchild of A:

<A xm ns: nl="&f oo; ">
<B xm ns: n2="&bar; ">
<Si gnature xm ns="&dsig;"> -
<Ref erence URI ="#signne"/> ...
</ Si gnat ur e>
<C | D="si gnne" xm ns="&baz;"/>
</ B>
</ A>

when either the element B or the sighed element Cis moved into a[SOAP] envelope for transport:
<SOAP: Envel ope xm ns: SOAP="htt p: // schemas. xn soap. or g/ soap/ envel ope/ ">
<SQOAP: Body>
<B xm ns: n2="&bar; ">
<Si gnature xm ns="&dsig;">
</ Si gnat ur e>

<C | D="si gnme" xm ns="&baz;"/>
</ B>

http://www.w3.org/TR/xmldsig-core/ (38 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

</ SOAP: Body>
</ SOAP: Envel ope>

The canonical form of the signature in this context will contain new namespace declarations from the SOAP: Envel ope context,
invalidating the signature. Also, the canonical form will lack namespace declarations it may have originally had from element A's
context, also invalidating the signature. To avoid these problems, the application may:

1. Rely upon the enveloping application to properly divorceits body (the signature payload) from the context (the envel ope)
before the signature is validated. Or,

2. Use acanonicalization method that "repels/excludes’ instead of "attracts" ancestor context. [XML-C14N] purposefully
attracts such context.

8.0 Security Considerations

The XML Signature specification provides avery flexible digital signature mechanism. Implementors must give consideration to
their application threat models and to the following factors.

8.1 Transforms

A requirement of this specification isto permit signatures to "apply to a part or totality of a XML document.” (See
[XML-Signature-RD, section 3.1.3].) The Tr ansf or ns mechanism meets this requirement by permitting one to sign data
derived from processing the content of the identified resource. For instance, applications that wish to sign aform, but permit users
to enter limited field data without invalidating a previous signature on the form might use [XPath] to exclude those portions the
user needsto change. Tr ansf or ms may be arbitrarily specified and may include encoding transforms, canonicalization
instructions or even XSLT transformations. Three cautions are raised with respect to this feature in the following sections.

Note, core validation behavior does not confirm that the signed data was obtained by applying each step of the indicated
transforms. (Though it does check that the digest of the resulting content matches that specified in the signature.) For example,
some applications may be satisfied with verifying an XML signature over a cached copy of already transformed data. Other
applications might require that content be freshly dereferenced and transformed.

8.1.1 Only What is Signed is Secure

First, obvioudly, signatures over atransformed document do not secure any information discarded by transforms: only what is
signed is secure.

Note that the use of Canonical XML [XML-C14N] ensuresthat all internal entities and XML namespaces are expanded within
the content being signed. All entities are replaced with their definitions and the canonical form explicitly represents the
namespace that an element would otherwise inherit. Applications that do not canonicalize XML content (especially the

Si gnedI nf o element) SHOULD NOT useinternal entities and SHOULD represent the namespace explicitly within the content
being signed since they can not rely upon canonicalization to do this for them. Also, users concerned with the integrity of the
element type definitions associated with the XML instance being signed may wish to sign those definitions as well (i.e., the
schema, DTD, or natural language description associated with the namespace/identifier).

Second, an envelope containing signed information is not secured by the signature. For instance, when an encrypted envelope
contains a signature, the signature does not protect the authenticity or integrity of unsigned envelope headers nor its ciphertext
form, it only secures the plaintext actually signed.

8.1.2 Only What is "Seen" Should be Signed

Additionally, the signature secures any information introduced by the transform: only what is "seen" (that which is represented to
the user viavisual, auditory or other media) should be signed. If signing isintended to convey the judgment or consent of a user
(an automated mechanism or person), then it is normally necessary to secure as exactly as practical the information that was
presented to that user. Note that this can be accomplished by literally signing what was presented, such as the screen images
shown a user. However, this may result in data which is difficult for subsequent software to manipulate. Instead, one can sign the
data along with whatever filters, style sheets, client profile or other information that affects its presentation.

8.1.3 "See" What is Signed

http://www.w3.org/TR/xmldsig-core/ (39 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

Just as a user should only sign what he or she "sees," persons and automated mechanism that trust the validity of atransformed
document on the basis of avalid signature should operate over the data that was transformed (including canonicalization) and
signed, not the original pre-transformed data. This recommendation applies to transforms specified within the signature as well as
those included as part of the document itself. For instance, if an XML document includes an embedded style sheet [XSLT] itis
the transformed document that should be represented to the user and signed. To meet this recommendation where a document
references an externa style sheet, the content of that external resource should also be signed asviaasignature Ref er ence
otherwise the content of that external content might change which aters the resulting document without invalidating the
signature.

Some applications might operate over the original or intermediary data but should be extremely careful about potential
weaknesses introduced between the original and transformed data. Thisis atrust decision about the character and meaning of the
transforms that an application needs to make with caution. Consider a canonicalization algorithm that normalizes character case
(lower to upper) or character composition (‘e and accent' to 'accented-€'). An adversary could introduce changes that are
normalized and consequently inconsequential to signature validity but material to a DOM processor. For instance, by changing
the case of a character one might influence the result of an XPath selection. A seriousrisk isintroduced if that changeis
normalized for signature validation but the processor operates over the original data and returns a different result than intended.

Asaresult:
« All documents operated upon and generated by signature applications MUST be in [NFC, NFC-Corrigendum] (otherwise
intermediate processors might unintentionally break the signature)

« Encoding normalizations SHOULD NOT be done as part of a signature transform, or (to state it another way) if
normalization does occur, the application SHOULD aways "see" (operate over) the normalized form.

8.2 Check the Security Model

This specification uses public key signatures and keyed hash authentication codes. These have substantially different security
models. Furthermore, it permits user specified algorithms which may have other models.

With public key signatures, any number of parties can hold the public key and verify signatures while only the parties with the
private key can create signatures. The number of holders of the private key should be minimized and preferably be one.
Confidence by verifiersin the public key they are using and its binding to the entity or capabilities represented by the
corresponding private key is an important issue, usually addressed by certificate or online authority systems.

Keyed hash authentication codes, based on secret keys, are typically much more efficient in terms of the computational effort
required but have the characteristic that all verifiers need to have possession of the same key as the signer. Thus any verifier can
forge signatures.

This specification permits user provided signature algorithms and keying information designators. Such user provided algorithms
may have different security models. For example, methods involving biometrics usually depend on a physical characteristic of the
authorized user that can not be changed the way public or secret keys can be and may have other security model differences.

8.3 Algorithms, Key Lengths, Certificates, Etc.

The strength of a particular signature depends on all links in the security chain. Thisincludes the signature and digest algorithms
used, the strength of the key generation [RANDOM] and the size of the key, the security of key and certificate authentication and
distribution mechanisms, certificate chain validation policy, protection of cryptographic processing from hostile observation and

tampering, etc.

Care must be exercised by applications in executing the various algorithms that may be specified in an XML signature and in the
processing of any "executable content” that might be provided to such algorithms as parameters, such as XSLT transforms. The
algorithms specified in this document will usually be implemented via atrusted library but even there perverse parameters might
cause unacceptable processing or memory demand. Even more care may be warranted with application defined algorithms.

The security of an overall system will also depend on the security and integrity of its operating procedures, its personnel, and on
the administrative enforcement of those procedures. All the factors listed in this section are important to the overall security of a
system; however, most are beyond the scope of this specification.

http://www.w3.0rg/TR/xmldsig-core/ (40 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/xslt#section-Creating-Processing-Instructions

XML-Signature Syntax and Processing

9.0 Schema, DTD, Data Model, and Valid Examples

XML Signature Schema Instance

xmldsig-core-schema.xsd

Valid XML schema instance based on the 20001024 Schema/DTD [XML-Schema].
XML Signature DTD

xmldsig-core-schema.dtd
RDF Data Model

xmldsig-datamodel-20000112.gif

XML Signature Object Example
signature-example.xml

A cryptographical fabricated XML example that includes foreign content and validates under the schema, it also uses
schemalLocat i on to aid automated schema fetching and validation.

RSA XML Signature Example
signature-example-rsa.xml

An XML Signature example with generated cryptographic values by Merlin Hughes and validated by Gregor Karlinger.
DSA XML Signature Example

signature-example-dsa.xml

Similar to above but uses DSA.

10.0 Definitions

Authentication Code (Protected Checksum)
A value generated from the application of a shared key to a message via a cryptographic algorithm such that it has the
properties of message authentication (and integrity) but not signer authentication. Equivalent to protected checksum, "A
checksum that is computed for a data object by means that protect against active attacks that would attempt to change the
checksum to make it match changes made to the data object.” [SEC]

Authentication, Message
The property, given an authentication code/protected checksum, that tampering with both the data and checksum, so asto
introduce changes while seemingly preserving integrity, are still detected. "A signature should identify what is signed,
making it impracticable to falsify or ater either the signed matter or the signature without detection.” [Digital Signature
Guidelines, ABA].

Authentication, Signer
The property that the identity of the signer is as claimed. "A signature should indicate who signed a document, message or
record, and should be difficult for another person to produce without authorization." [Digital Signature Guidelines, ABA]
Note, signer authentication is an application decision (e.g., does the signing key actually correspond to a specific identity)
that is supported by, but out of scope, of this specification.

Checksum

"A vauethat (a) is computed by afunction that is dependent on the contents of a data object and (b) is stored or transmitted
together with the object, for the purpose of detecting changesin the data." [SEC]

Core
The syntax and processing defined by this specification, including core validation. We use this term to distinguish other
markup, processing, and applications semantics from our own.

Data Object (Content/Document)
The actual binary/octet data being operated on (transformed, digested, or signed) by an application -- frequently an HTTP

entity [HTTP]. Note that the proper noun Obj ect designates a specific XML element. Occasionally we refer to a data
object as adocument or as aresource's content. The term element content is used to describe the data between XML start

http://www.w3.0rg/TR/xmldsig-core/ (41 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.dtd
http://www.w3.org/TR/xmldsig-core/xmldsig-datamodel-20000112.gif
http://www.w3.org/TR/xmldsig-core/signature-example.xml
http://www.w3.org/TR/xmldsig-core/signature-example-rsa.xml
http://www.w3.org/TR/xmldsig-core/signature-example-dsa.xml
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7

XML-Signature Syntax and Processing

and end tags [XML]. The term XML document is used to describe data objects which conform to the XML specification
[XML].

Integrity
"The property that data has not been changed, destroyed, or lost in an unauthorized or accidental manner." [SEC] A simple
checksum can provide integrity from incidental changes in the data; message authentication is similar but also protects
against an active attack to alter the data whereby a change in the checksum is introduced so as to match the change in the
data.

Object
An XML Signature element wherein arbitrary (non-core) data may be placed. An Qbj ect element is merely one type of
digital data (or document) that can be signed viaa Ref er ence.

Resource

"A resource can be anything that has identity. Familiar examples include an el ectronic document, an image, a service (e.g.,
'today's weather report for Los Angeles), and a collection of other resources.... The resource is the conceptual mapping to
an entity or set of entities, not necessarily the entity which corresponds to that mapping at any particular instance in time.
Thus, aresource can remain constant even when its content---the entities to which it currently corresponds---changes over
time, provided that the conceptual mapping is not changed in the process.” [URI] In order to avoid a collision of the term
entity within the URI and XML specifications, we use the term data object, content or document to refer to the actual
bits/octets being operated upon.

Signature
Formally speaking, a value generated from the application of a private key to a message via a cryptographic algorithm such
that it has the properties of integrity, message authentication and/or signer authentication. (However, we sometimes use the
term signature generically such that it encompasses Authentication Code values as well, but we are careful to make the
distinction when the property of signer authentication is relevant to the exposition.) A signature may be (non-exclusively)
described as detached, enveloping, or enveloped.

Signature, Application

An application that implements the MANDATORY (REQUIRED/MUST) portions of this specification; these conformance
reguirements are over application behavior, the structure of the Si gnat ur e element type and its children (including
Si gnat ur eVal ue) and the specified algorithms.

Signature, Detached

The signature is over content external to the Si gnat ur e element, and can be identified viaa URI or transform.
Consequently, the signature is "detached" from the content it signs. This definition typically applies to separate data
objects, but it also includes the instance where the Si gnat ur e and data object reside within the same XML document but
are sibling elements.

Signature, Enveloping
The signature is over content found within an Obj ect element of the signature itself. The Cbj ect (or its content) is
identified viaaRef er ence (viaaURI fragment identifier or transform).

Signature, Enveloped

The signature is over the XML content that contains the signature as an element. The content provides the root XML
document element. Obviously, enveloped signatures must take care not to include their own value in the calculation of the
Si gnat ur eVal ue.

Transform
The processing of adatafrom its source to its derived form. Typical transformsinclude XML Canonicalization, X Path, and
XSLT.

Validation, Core
The core processing requirements of this specification requiring signature validation and Si gnedl| nf o reference
validation.
Validation, Reference
The hash value of the identified and transformed content, specified by Ref er ence, matchesits specified Di gest Val ue.
Validation, Signature

http://www.w3.0rg/TR/xmldsig-core/ (42 of 46) [8/12/2002 7:06:44 PM]

XML-Signature Syntax and Processing

The Si gnat ur eVal ue matches the result of processing Si gnedl nf o with Canoni cal i zat i onMet hod and
Si gnat ur eMet hod as specified in Core Validation (section 3.2).

Validation, Trust/Application

The application determines that the semantics associated with a signature are valid. For example, an application may
validate the time stamps or the integrity of the signer key -- though this behavior is external to this core specification.

11.0 References

ABA
Digital Signature Guidelines.
http://www.abanet.org/scitech/ec/isc/dsgfree.html
DOM

Document Object Model (DOM) Level 1 Specification. W3C Recommendation. V. Apparao, S. Byrne, M. Champion, S.
Isaacs, |. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood. October 1998.
http://www.w3.org/TR/1998/REC-DOM-L evel-1-19981001/

DSS

FIPS PUB 186-2 . Digital Sgnature Sandard (DSS). U.S. Department of Commerce/National Institute of Standards and

Technology.
http://csrc.nist.gov/publicati ons/fips/fips186-2/fips186-2.pdf

HMAC
RFC 2104. HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, R. Canetti. February 1997.
http://www.ietf.org/rfc/rfc2104.txt

HTTP

RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.

Berners-Lee. June 1999.
http://www.ietf.org/rfc/rfc2616.txt

KEYWORDS
RFC 2119. Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

LDAP-DN

RFC 2253. Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names. M. Wahl, S.

Kille, T. Howes. December 1997.
http://www.ietf.org/rfc/rfc2253.txt

MD5
RFC 1321. The MD5 Message-Digest Algorithm. R. Rivest. April 1992.
http://www.ietf.org/rfc/rfc1321.txt

MIME

RFEC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed & N.

Borenstein. November 1996.
http://www.ietf.org/rfc/rfc2045.txt

NFC

TR15, Unicode Normalization Forms. M. Davis, M. Dirst. Revision 18: November 1999.
http://www.unicode.org/unicode/reports/tr15/tr15-18.html.

NFC-Corrigendum

Normalization Corrigendum. The Unicode Consortium.
http://www.unicode.org/unicode/uni 2errata/lNormalization_Corrigendum.html.

PGP

http://www.w3.0rg/TR/xmldsig-core/ (43 of 46) [8/12/2002 7:06:44 PM]

http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.unicode.org/unicode/reports/tr15/tr15-18.html
http://www.unicode.org/unicode/uni2errata/Normalization_Corrigendum.html

XML-Signature Syntax and Processing

RFEC 2440. OpenPGP Message Format. J. Callas, L. Donnerhacke, H. Finney, R. Thayer. November 1998.
http://www.ietf.org/rfc/rfc2440.txt

RANDOM
RFC 1750. Randomness Recommendations for Security. D. Eastlake, S. Crocker, J. Schiller. December 1994.
http://www.ietf.org/rfc/rfc1750.txt

RDF

Resource Description Framework (RDF) Schema Specification 1.0. W3C Candidate Recommendation. D. Brickley, R.V.

Guha. March 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation. O. Lassila, R. Swick.

February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

1363
|EEE 1363: Standard Specifications for Public Key Cryptography. August 2000.

PKCS1
RFC 2437. PKCS#1: RSA Cryptography Specifications Version 2.0. B. Kaliski, J. Staddon. October 1998.
http://www.ietf.org/rfc/rfc2437.txt

SAX

SAX: The Simple API for XML. D. Megginson, et al. May 1998.
http://www.meggi nson.com/SA X/index.html

SEC
RFC 2828. Internet Security Glossary. R. Shirey. May 2000.
http://www.fags.org/rfcs/rfc2828.html
SHA-1
FIPS PUB 180-1. Secure Hash Sandard. U.S. Department of Commerce/National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180- 1/fip180-1.txt
SOAP

Simple Object Access Protocol (SOAP) Version 1.1. W3C Note. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer. May 2001.

http://www.w3.org/TR/2000/NOT E-SOA P-20000508/
Unicode

The Unicode Consortium. The Unicode Sandard.
http://www.unicode.org/uni code/standard/standard.html

UTF-16
RFC 2781. UTF-16, an encoding of 1SO 10646. P. Hoffman , F. Y ergeau. February 2000.
http://www.ietf.org/rfc/rfc2781.txt

UTF-8
RFC 2279. UTF-8, a transformation format of 1SO 10646. F. Y ergeau. January 1998.
http://www.ietf.org/rfc/rfc2279.txt

URI

REC 2396. Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.
http://www.ietf.org/rfc/rfc2396.txt

URI-Literal
RFC 2732. Format for Literal IPv6 Addressesin URL's. R. Hinden, B. Carpenter, L. Masinter. December 1999.
http://www.ietf.org/rfc/rfc2732.txt

URL

http://www.w3.0rg/TR/xmldsig-core/ (44 of 46) [8/12/2002 7:06:44 PM]

http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc1750.txt
http://www.ietf.org/rfc/rfc1750.txt
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt
http://www.megginson.com/SAX/index.html
http://www.megginson.com/SAX/index.html
http://www.ietf.org/rfc/rfc2828.txt
http://www.faqs.org/rfcs/rfc2828.html
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.unicode.org/unicode/standard/standard.html
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt

XML-Signature Syntax and Processing

RFC 1738. Uniform Resource Locators (URL). T. Berners-Lee, L. Masinter, and M. McCahill. December 1994.
http://www.ietf.org/rfc/rfcl1738.txt

URN
RFC 2141. URN Syntax. R. Moats. May 1997.
http://www.ietf.org/rfc/rfc2141.txt
RFC 2611. URN Namespace Definition Mechanisms. L. Daigle, D. van Gulik, R. lannella, P. Falstrom. June 1999.
http://www.ietf.org/rfc/rfc2611.txt

X509v3

ITU-T Recommendation X.509 version 3 (1997). "Information Technology - Open Systems Interconnection - The
Directory Authentication Framework" 1SO/IEC 9594-8:1997.

XHTML 1.0

XHTML (tm) 1.0: The Extensible Hypertext Markup Language. W3C Recommendation. S. Pemberton, D. Raggett, et al.

January 2000.
http://www.w3.org/TR/2000/REC-xhtml 1-20000126/

XLink
XML Linking Language. W3C Recommendation. S. DeRose, E. Maler, D. Orchard. June 2001.
http://www.w3.0rg/TR/2001/REC-xlink-20010627/
XML
Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation. T. Bray, E. Maler, J. Paoli, C. M.
Sperberg-McQueen. October 2000.
http://www.w3.org/TR/2000/REC-xml-20001006
XML-C14N
Canonical XML. W3C Recommendation. J. Boyer. March 2001.
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315
http://www.ietf.org/rfc/rfc3076.txt
XML-Japanese
XML Japanese Profile. W3C Note. M. Murata April 2000 http://www.w3.org/TR/2000/NOT E-japanese-xml-20000414/
XML-MT
RFC 2376 . XML Media Types. E. Whitehead, M. Murata. July 1998.
http://www.ietf.org/rfc/rfc2376.txt
XML-ns
Namespacesin XML . W3C Recommendation. T. Bray, D. Hollander, A. Layman. January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114
XML-schema

XML Schema Part 1: Structures. W3C Recommendation. D. Beech, M. Maoney, N. Mendelsohn, H. Thompson. May
2001.

http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502/
XML Schema Part 2: Datatypes W3C Recommendation. P. Biron, A. Malhotra. May 2001.
http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/
XML-Signature-RD
RFC 2807. XML Signature Requirements. W3C Working Draft. J. Reagle, April 2000.
http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014
http://www.ietf.org/rfc/rfc2807.txt
XPath
XML Path Language (XPath) Version 1.0. W3C Recommendation. J. Clark, S. DeRose. October 1999.

http://www.w3.0rg/TR/xmldsig-core/ (45 of 46) [8/12/2002 7:06:44 PM]

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2611.txt
http://www.ietf.org/rfc/rfc2611.txt
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.ietf.org/rfc/rfc3076.txt
http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/
http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.ietf.org/rfc/rfc2807.txt
http://www.w3.org/TR/xmldsig-requirements
http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014.html
http://www.ietf.org/rfc/rfc2807.txt
http://www.w3.org/TR/1999/REC-xpath-19991116

XML-Signature Syntax and Processing

http://www.w3.0rg/TR/1999/REC-xpath-19991116

XPointer
XML Pointer Language (X Pointer). W3C Candidate Recommendation. S. DeRose, R. Daniel, E. Maler. January 2001.
http://www.w3.0rg/TR/2001/CR-xptr-20010911/

XSL

Extensible Stylesheet Language (XSL). W3C Recommendation. S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P.
Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles. October 2001.

http://www.w3.0rg/TR/2001/REC-xsl-20011015/

XSLT
XSL Transforms (XSLT) Version 1.0. W3C Recommendation. J. Clark. November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.html

12. Authors' Address

Donad E. Eastlake 3rd

Motorola, 20 Forbes Boulevard
Mansfield, MA 02048 USA

Phone: 1-508-261-5434

Email: Donald.Eastlake@motorola.com

Joseph M. Reagle Jr., W3C
Massachusetts I nstitute of Technology
Laboratory for Computer Science
NE43-350, 545 Technology Square
Cambridge, MA 02139

Phone: + 1.617.258.7621

Email: reagle@w3.org
David Solo
Citigroup

909 Third Ave, 16th Floor
NY, NY 10043 USA

Phone +1-212-559-2900
Email: dsolo@aum.mit.edu

http://www.w3.0rg/TR/xmldsig-core/ (46 of 46) [8/12/2002 7:06:44 PM]

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/1999/REC-xslt-19991116.html
http://www.w3.org/TR/1999/REC-xslt-19991116.html
mailto:Donald.Eastlake@motorola.com
http://www.w3.org/
mailto:reagle@w3.org
mailto:dsolo@alum.mit.edu

	XML-Signature Syntax and Processing
	12 Feb 2002, W3C Recommendation, Worold Wide Web Consortium
	Abstract
	Status of this document
	Table of Contents
	1.0 Introduction
	1.1 Editorial and Conformance Conventions
	1.2 Design Philosophy
	1.3 Versions, Namespaces and Identifiers
	1.4 Acknowledgements

	2.0 Signature Overview and Examples
	2.1 Simple Example (Signature, SignedInfo, Methods, and Reference)s
	2.1.1 More on Reference

	2.2 Extended Example (Object and SignatureProperty)
	2.3 Extended Example (Object and Manifest)

	3.0 Processing Rules
	3.1 Core Generation
	3.1.1 Reference Generation
	3.1.2 Signature Generation

	3.2 Core Validation
	3.2.1 Reference Validation
	3.2.2 Signature Validation

	4.0 Core Signature Syntax
	4.0.1 The ds:CryptoBinary Simple Type
	4.1 The Signature element
	4.2 The SignatureValue Element
	4.3 The SignedInfo Element
	4.3.1 The Element
	4.3.2 The Element
	4.3.3 The Element
	4.3.3.1 The Attribute
	4.3.3.2 The Reference Processing Model
	4.3.3.3 Same-Document URI-References
	4.3.3.4 The Element
	4.3.3.5 The Element
	4.3.3.6 The Element

	4.4 The KeyInfo Element
	4.4.1 The Element
	4.4.2 The Element
	4.4.2.1 The Element
	4.4.2.2 The Element

	4.4.3 The Element
	4.4.4 The Element
	4.4.5 The Element
	4.4.6 The Element
	4.4.7 The Element

	5.0 Additional Signature Syntax
	5.1 The Manifest Element
	5.2 The SignatureProperties Element
	5.3 Processing Instructions in Signature Elements
	5.4 Comments in Signature Elements

	6.0 Algorithms
	6.1 Algorithm Identifiers and Implementation Requirements
	6.2 Message Digests
	6.2.1 SHA-1

	6.3 Message Authentication Codes
	6.3.1 HMAC

	6.4 Signature Algorithms
	6.4.1 DSA
	6.4.2 PKCS1 (RSA-SHA1)

	6.5 Canonicalization Algorithms
	6.5.1 Canonical XML

	6.6 Transform Algorithms
	6.6.1 Canonicalization
	6.6.2 Base64
	6.6.3 XPath Filtering
	6.6.4 Enveloped Signature Transform
	6.6.5 XSLT Transform

	7.0 XML Canonicalization and Syntax Constraint Considerations
	7.1 XML 1.0, Syntax Constraints, and Canonicalization
	7.2 DOM/SAX Processing and Canonicalization
	7.3 Namespace Context and Portable Signatures

	8.0 Security Considerations
	8.1 Transforms
	8.1.1 Only What is Signed is Secure
	8.1.2 Only What is "Seen" Should be Signed
	8.1.3 "See" What is Signed

	8.2 Check the Security Model
	8.3 Algorithms, Key Lengths, Certificates, Etc.

	9.0 Schema, DTD, Data Model, and Valid Examples
	10.0 Definitions
	11.0 References
	12. Authors' Address

	
	World Wide Web Consortium Title Page

