

XML Technical Specification
for Higher Education

Version 2.5

May 2003

A publication of the

Postsecondary Electronic Standards Council

(this page is intentionally left blank)

i

XML Technical Specification for Higher Education

Table Of Contents

1 Introduction... 1

1.1 Purpose and Scope .. 1
1.2 Intended Audience .. 2

2 XML Forum Work Products.. 2
2.1 General Guidelines ... 2

2.1.1 General Naming Conventions .. 2
2.1.2 Versioning Methodology ... 3
2.1.3 URI, URL, File, and Directory Structure... 3

2.1.3.1 Core Data Dictionary.. 4
2.1.3.2 Sector Dictionaries ... 4
2.1.3.3 Instance Document Schemas .. 4

2.2 Core Components ... 5
2.2.1 Metadata Essential for XML Syntax ... 5

2.2.1.1 Data Types ... 5
2.2.1.2 Aggregate Items... 6
2.2.1.3 Spreadsheet Organization and Columns... 7
2.2.1.4 Analysis Orientation ... 8
2.2.1.5 Code Lists .. 8

2.2.2 Core Component Naming Conventions .. 9
2.2.3 Explicit Versus Generic Names for Elements... 9

2.2.3.1 Elements with Structural Differences ... 10
2.2.3.2 Understand Child Element Semantics ... 10
2.2.3.3 Tightly Constrained Relationships ... 11
2.2.3.4 Conveying Ancillary Information... 11

2.3 Best Practices ... 12
2.3.1 General Design Considerations ... 12
2.3.2 Schema vs. DTD... 12
2.3.3 Use of Elements vs. Attributes... 13
2.3.4 Element vs. Type.. 16
2.3.5 Hide vs. Expose Namespaces .. 20
2.3.6 Local vs. Global ... 24
2.3.7 Namespaces - Zero, One or Many .. 26
2.3.8 Nulls, Zeroes, Spaces, and Absence of Data.. 28
2.3.9 Other Considerations .. 30

3 XML Schema Development Roadmap... 30
4 Implementation Recommendations .. 32

4.1 Why This Section? .. 32
4.2 General Requirements.. 33
4.3 Message Handling .. 34

4.3.1 Requirements ... 34
4.3.2 Options and Near Term Recommendations.. 35
4.3.3 Long Term Recommendations ... 38

4.4 Security ... 38
4.4.1 Requirements ... 38

4.4.1.1 General Considerations ... 39
4.4.1.2 Security Considerations ... 39
4.4.1.3 Countermeasures and Remediation Strategies... 40
4.4.1.4 Encryption .. 41

4.4.2 Near Term Recommendations.. 42

 ii

4.4.3 Long Term Recommendations ... 43
4.5 Registries and Repositories .. 43

4.5.1 Requirements ... 43
4.5.2 Near Term Recommendations.. 44
4.5.3 Long Term Recommendations ... 44

4.6 Electronic Trading Partner Agreements.. 44
4.6.1 Requirements ... 44
4.6.2 Near Term Recommendations.. 45
4.6.3 Long Term Recommendations ... 45

5 Reference Documents & Standards .. 45
5.1 Terms .. 46
5.2 Acronyms .. 46

iii

Development of the XML Technical Specification

This specification is an ongoing output of the Technology Work Group of the XML Forum for
Education. First organized in August 2000 on the recommendation of a PESC study group, the
XML Forum has as its mission the establishment of Extensible Markup Language (XML)
standards for the education community through collaboration. The Technology Work Group was
charged with performing research on existing XML specifications and best practices and
providing technical guidance to XML developers in the education space. This document is the
result of its efforts over the past eighteen months. It will be updated periodically as national and
international XML standards are established.

Michael Rawlins, Principal Consultant of Rawlins EC Consulting, collaborated with the
Technology Work Group, adding to the process his experience in standards-setting bodies and
knowledge of XML. Mike has over 15 years of experience as a technical consultant in
information systems. He is vice chair of ANSI ASC X12 Subcommittee C on Communications
and Controls and co-chairs X12C’s Future Architecture Task Group, which is responsible for
technical aspects of X12’s work on XML. He participated in the ebXML effort, serving on the
steering committee and leading the Requirements Project Team. Mike has a Masters of Science
degree in Computer Science from the University of Texas at Dallas.

Although representatives of the IMS Global Learning Consortium, University of Wisconsin-
Madison, Miami-Dade Community College, Brown University, and the US Department of
Education were important members of the work group, several work group members deserve
special recognition for their contributions to this document. Bruce Marton of the University of
Texas-Austin and Chair of the XML Forum Architecture Committee provided guidance and
perspective during development of this version. Karl Van Neste of the College Board has served
as chair of the Technology Work Group and provided leadership and expertise to initial efforts.
Steve Margenau of Great Lakes Educational Loan Services has chaired the Technology
Workgroup and provided research and recommendations for key sections of the document. Mike
Cargal of TSYS and Mark Bolembach of SCT brought a wealth of design and technical
knowledge to the effort. Richard Driscoll and others at Datatel provided review and editorial
assistance in the publication of the document.

The Postsecondary Electronic Standards Council
One Dupont Circle NW

Suite 520
Washington, DC 20036

(202) 293-7383
http://www.StandardsCouncil.org

 May 2003 Postsecondary Electronic Standards Council

 iv

 v

(this page is intentionally left blank)

1

1 Introduction
This specification was developed by members of the XML Forum for Education’s
Technology Work Group in consultation with its technical advisor. The purpose
of this specification is to help guide the work of the XML Forum, providing
recommendations to inform decisions that face the following groups:

• The Core Components Work Group in the development and maintenance
of a data dictionary and data models in conjunction with the Technology
Work Group

• The Technology Work Group in the development of schemas based on
the data models

• The Web Services Work Group, as it works to define what PESC can
provide to its members as this technology evolves

• The XML Forum, as an organization, as its structure changes to meet the
needs of the higher education community

• The higher education community as it implements XML message data
exchanges

This specification is a living document – it is expected to change and evolve with
XML and its related standards.

The development of this specification served to clarify, for the XML Forum, the
most efficient work processes and the ultimate deliverables of the standing and
ad hoc work groups of the XML Forum.

Every effort was made to build on the experience and work done previously by
other standards organizations within and outside of Higher Education: W3C,
ebXML, IFX, X12, CommonLine, IMS, IEEE, and ISO, among others.

Keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in
this document, are to be interpreted as described in the Internet Engineering
Task Force (IETF) Request for Comments (RFC) 2119.

1.1 Purpose and Scope
The purpose of this document is to provide guidance in the development and
maintenance of a data dictionary and XML schemas. The scope of this
specification includes the data which institutions and their partner’s exchange in
support of the existing business processes within Higher Education like
administrative applications for student financial aid, admissions, and registrar
functions.

 2

1.2 Intended Audience
The intended audience of this document is the members of the XML Forum for
Education as well as the technical members of the education community at large
wishing to use XML in their data exchanges.

2 XML Forum Work Products

2.1 General Guidelines

2.1.1 General Naming Conventions
The following recommendations by the XML Forum’s Technology Group for
general conventional standards are used whenever possible.

• Upper Camel Case (UCC) SHALL be used. UCC style capitalizes the first
character of each word and compounds the name following the
conventions of the ebXML Technical Architecture v1.0.4, section 4.3.
ebXML Technical Architecture specifies lowercamelcase for attributes, but
PESC chose UCC for both elements and attributes due to the inherent
readability of the format.

• Acronyms SHOULD be avoided, but in cases where they are used, the
capitalization SHALL remain (ebXML Technical Architecture section 4.3).
(example: XMLSignature).

• Underscore (_), periods (.) and dashes (-) MUST NOT be used
(ebXML Technical Architecture section 4.3).
(examples: use HeaderManifest, not Header.Manifest;
 use StockQuote5, not Stock_Quote_5;
 use CommercialTransaction not Commercial-Transaction.)

• XML "type" names SHALL have "Type" appended to them (UBL Naming
and Design Rules, draft 22, rule 13 and rule 21).
(example: type=”NameType”)

• Schema names adhere to the following conventions.

1. Schema document names (the root element of a schema) SHALL be
based on the business purpose of the document.

2. Schema names that support the data dictionary SHALL be based on

the category of definitions in that schema.

3. Schema physical file names SHALL be the same as the schema name,
with a ".xsd" extension.

4. Schema names SHALL remain constant across all versions.

NOTE: A list of acronyms used in this document can be found in section

5.2.

 3

2.1.2 Versioning Methodology
The initial approved set of XML Forum schemas SHALL be designated 1.0. New
versions, developed primarily for maintenance purposes or the inclusion of new
documents, SHALL be deemed minor releases and incremented by .1. Major
releases SHALL be incremented by 1.0. Major releases SHALL be designated
under such circumstances as the following.

• Several new documents are developed
• Major additions are made to the data dictionary
• Changes to file, URL, or namespace schemes
• Changes in schema design approach

Versions SHALL be named by a four-character string formed by two digits
indicating the major version followed by two digits for the minor version, using
leading zeroes. Separate URLs, URIs, and directories SHALL be used for each
version. Each schema SHALL specify that a corresponding instance document
MUST have, in the root element, a separate attribute named
“PESCXMLVersion”. This is similar to the architecture put forth in ANSI ASC
X12 Reference Model for XML Design, section 7.1.2 and Annex E, section 8.

2.1.3 URI, URL, File, and Directory Structure
PESC has chosen to use various aspects of the ANSI ASC X12 Reference
Model for XML Design (Annex E, section 8). Similarities will also be seen in the
Universal Business Language Naming and Design Rules draft 22, Section 5.

The base URI for namespaces in XML Forum schemas SHALL be
http://schemas.PESCXML.org. This URI SHALL also be valid as the base URL
for the network location of the XML Forum schemas and associated files. The
version string MUST be appended to this base URI to form the URI relevant to
the version.
(example: Version 1.0 has the URI http://schemas.PESCXML.org/0100)

The Forum plans to make several different types of files available on its web site.
A brief description of the categories and their URL/URI specifications is listed
below. Succeeding subsections specify further details. All path names below
are located under the base version URL path.

• Schema files – Schema Files are the largest category of components and
is further broken down in succeeding subsections. Schema files are
located in the xsd path.

• XSLT Stylesheets - Although not "standard" work products of the Forum,
the Forum intends to provide here a facility for sharing and distributing
commonly used transformation stylesheets. XSLT stylesheets are located
in the xsl path.

 4

• Sample instance documents - There are several sample instance
documents per business document schema. These are located in the
xmlExamples path.

• Documentation – Documentation Is located in the docs path.

For each area, the path has sub-paths for core and sectors are described below.

2.1.3.1 Core Data Dictionary
Paths - core and baseTypes
Root files and URLs: xsd/core/coreMain.xsd and
xsd/baseTypes/baseTypesMain.xsd

• Core - The Core Components team, in a common “Core” data dictionary,
SHALL define all aggregates and their member elements. This Core data
dictionary MAY be represented by several schemas, divided into groups of
related items as will be described in a later section. The root URI for
Version 1.0 of the Core schema, for example, has the root namespace of
“http://schemas.PESCXML.org/0100/core” and is associated with the
namespace identifier “core”. Names of these schemas are derived from
reasonable names assigned to the groups by the Core Components team.
Such files are xsd:included into coreMain.xsd.

• BaseTypes - Base types represent re-usable "leaf level" data elements
that are either simpleTypes or complexTypes (if they have aggregates).
They do not have child elements. Base types are derived from standard
W3C Schema data types by extension or restriction. Examples of base
types are numerics with range or sign restriction, strings with length
restrictions, and enumerations. These may all be specified in the
baseTypesMain.xsd schema file, or broken into groups of related items
that are xsd:included into baseTypesMain.xsd.

2.1.3.2 Sector Dictionaries
Root files and URL path: xsd/sectorName/sectorNameMain.xsd

In addition to the Core dictionary, the Core Components team MAY define one or
more “Sector” data dictionaries. A Sector dictionary applies to a defined
functional sector of the postsecondary arena and supports requirements unique
to that sector for aggregate membership, cardinality, pattern, and/or code values.
A Sector dictionary SHALL be represented by a single schema. Sector schemas
import the Core and base type schemas. The root URI for version 1.0 of a
Sector schema named, for example, “SectorName” has the root namespace of
“http://schemas.PESCXML.org/0100/SectorName”. Sector content may be
specified in the sectorNameMain.xsd schema file, or broken into groups of
related items that are xsd:included in them.

2.1.3.3 Instance Document Schemas
URL path: xsd/sectorName/

 5

Instance document definitions are declared under the appropriate Sector URI.
Each instance document has a targetNamespace and schema file specific to that
document. The instance document schema imports the Sector namespace and,
where appropriate, may import the Core namespace. For example. the root URI
for version 1.0 of the Transcript schema within the Registrar and Administration
Sector has the root namespace of
“http://schemas.PESCXML.org/0100/RegAdmin/Transcript”.

The instance document schema SHOULD have the basic structure of a root
element with an anonymously defined complexType. Each of it's first level
children SHOULD be of a type specified in the Core or Sector library. Where an
instance document schema requires modifications to the types defined in either
the sector or core, these modifications SHALL be expressed as named types
following the declaration of the root element. Such extended or restricted types
shall reside in the namespace of the instance document schema.

NOTE: The long term goal and strategy is to have as few such locally declared

types as possible in instance document schemas and to migrate
common content to sector and core libraries.

2.2 Core Components

2.2.1 Metadata Essential for XML Syntax
To facilitate creation of schemas, the following metadata items SHALL be
recorded, but is not limited to, in the data dictionary for each element.

• Aggregate object name
• Element name
• Cardinality rules
• Element description
• Element equivalence in other transaction(s)
• Data type (string, date, number, etc)
• Minimum length

NOTE: May be specified in the Core and raised in the Sector.
• Maximum length

NOTE: May be specified in the Core and lowered in the Sector.
• Values of code elements

2.2.1.1 Data Types
The following simplified list of datatypes SHALL be used for core component
analysis, instead of the full set supported by XML schemas. Each type has
several OPTIONAL attributes that MAY be specified, as needed, for a particular
data item.

 6

• Number - precision (number of decimal places), minimum value, maximum
value

• String (as defined by the W3C in XML Schema Part 2: Datatypes) - min
length, max length, and pattern facets (such as NNN-NN-NNNN for Social
Security Numbers). Patterns, if used, MUST be specified using a regular
expression language as defined by the W3C in XML Schema Part 2:
DataTypes Regular Expressions. If a pattern facet is specified in the
Core schema it MAY be modified by a Sector schema as long as that
modification is a subset of the Core schema pattern. If an element
contains a member of a list, all potential list values MUST be specified
(this resolves the issue with coded fields).
NOTE: If a string item is specified as mandatory in an aggregate item, it

is RECOMMENDED to have a minimum length of 1.
• Date
• Time
• DateTime
• Boolean - 0,1,true,false

When a data item is defined, it MUST be assigned a type from this set. The
attributes listed SHOULD be used to place restrictions on the allowed values. If
the attributes are not listed in the data item’s definition, then there are no
restrictions beyond the general restrictions implied by the datatype.

2.2.1.2 Aggregate Items

2.2.1.2.1 Specification of Aggregates
Aggregate data items are composed of two or more data items. For aggregates
the following apply.

• The included elements MUST be specified in sequence. The core
dictionary SHOULD specify the common elements.

• Sector dictionaries MAY restrict included elements, and MAY add
additional elements.

• Cardinality (how many times an included element may occur in the
aggregate) SHALL be specified for aggregates in the core dictionary. The
widest common range of cardinality shall be expressed in the Core. The
cardinality of elements within aggregates in the Core is defined as that
which is most applicable to the widest range of uses, with a goal of
minimizing the need for modification in sector or document schemas. The
defaults in most cases will be 0..1 or 1..1).

• The cardinality SHALL be expressed as l..u where l is the lower number of
occurrences and u is the upper number of occurrences. A wild card of "*"
SHALL be used to indicate no upper limit. (For example, a cardinality of
1..1 means that the data item is mandatory in the aggregate and can
occur only once. 0..1 means that the data item is OPTIONAL, and can

 7

occur no more than once. 0..* means that it is OPTIONAL and if it does
occur there are no limits on how many times it can occur.)

NOTE: It is RECOMMENDED that judicious consideration be given before
specifying an item in an aggregate as mandatory (minimum cardinality of 1).

2.2.1.2.2 Issues Concerning Aggregates
The following recommendations are made for addressing issues regarding
aggregates.

• Over-riding the cardinality of an item in an aggregate on a per document
basis
(example: a street address is mandatory in a reissue but is not

mandatory in an adjustment.)
It is RECOMMENDED that this type of definition not be supported (at least
in Version 1) since it makes defining reusable aggregates more complex.
One RECOMMENDED approach is to define street address with a
cardinality 0..2 in an "address" aggregate, but define address 1..1 in the
reissue and 0..1 in the adjustment.

• Conditional use of items in an aggregate – As in the case of X12 EDI,
these are the relational conditions often imposed on elements in
segments.
(examples: Use "a" or "b" but not both;
 if "a" then use "b", else use "c".)
It is RECOMMENDED that conditionals not be supported (at least in
Version 1) since it adds complexity to the analysis and construction of the
schemas. Use of such conditional restrictions and edits, not being
supported in the schemas, SHALL be the responsibility of the business
applications that use the data.

2.2.1.3 Spreadsheet Organization and Columns

2.2.1.3.1 Organization
Analysis spreadsheets SHOULD be organized as follows:

• Basic A simple data item.
• Aggregates A group of basic items or other aggregates, specified in

sequence. If a basic item is not re-used, the full specification
MAY appear within the aggregate rather than being specified
on a separate line.

2.2.1.3.2 Columns
Columns SHOULD be organized as follows:

• Aggregate Name

 8

• Name of included item. If an aggregate is included within an aggregate,
only the name of the aggregate SHOULD be listed - not the names of all
of its children

• Description
• Datatype
• Cardinality - The number of times the included item can appear in the

aggregate
• For each basic item:

• Minimum length - OPTIONAL (String Only)
• Maximum length - OPTIONAL (String Only)
• Pattern - OPTIONAL (String Only)
• List of values - OPTIONAL (String Only)
• Minimum value - OPTIONAL (Number Only)
• Maximum value - OPTIONAL (Number Only)
• Comments – (example: Code sets or source)
• Sector Library. For a sector library spreadsheet, designates the item

as new in the sector library, present in the core library but modified in
the sector library, or present in the core library and referenced in the
sector library.

NOTE: Some reusable basic items MAY not have an aggregate name.

2.2.1.4 Analysis Orientation
It is RECOMMENDED that the data dictionary use the core components as
"abstract" items or types rather than the full set of all particular items.
(example: a general "party" is defined rather than specifying "student",

"lender", or "guarantor" separately.)
This approach enhances reusability and simplifies maintenance.

2.2.1.5 Code Lists
The use of code lists SHOULD be organized as follows.

• The XML Forum strongly recommends that where text values of metadata
are of reasonable length and common to all participants, code lists made
up of whole words or industry-recognized fragments SHOULD be used.
This same approach has been adopted by the Association of Retail
Technology Standards (ARTS)
http://www-106.ibm.com/developerworks/xml/library/x-retail.html.

• Short, two or three character codes SHALL be used where deemed
appropriate by the Core Components team instead of longer, more fully
described words or phrases.

• For code lists that are created and maintained by the XML Forum,
permitted values SHALL be listed in the data dictionary and as
documentation in document schemas. Schemas SHALL NOT be written
so as to provide run-time schema validation of codes against the permitted

 9

values in the list. The justifications for these rules are that we do not wish
implementations to be delayed by administrative and procedural delays in
adding codes to schemas, and that business applications are likely to
perform their own code value checking, making schema validation
redundant.

• For code lists that are created and maintained by organizations
other than the Forum, the Core Components team SHALL determine
whether or not schema validation is to be supported. The team SHALL
make this decision based on factors such as the stability of the code list,
size of the code list, and copyright status. Schemas SHALL NOT import or
include schemas from other organizations for the purpose of code list
validation.

2.2.2 Core Component Naming Conventions
ebXML core component naming conventions (based on ISO 11179) SHALL be
used for a XML Forum logical component. Names for elements MAY be
modeled after the IFX Forum's name fragment combinations for XML tags. The
IFX Forum's name fragments SHOULD be used wherever an appropriate match
exists with an XML Forum element name. Where a match does not exist, the
necessary fragments SHALL be created by the XML Forum team responsible for
the data dictionary.

2.2.3 Explicit Versus Generic Names for Elements
The XML Forum has had ongoing discussions regarding the best approach for
modeling data elements or groups of data that are similar in concept but have
different data requirements or meanings in the context of a business document.
Examples include differentiating between a home address and a business
address, a domestic address and a foreign address, or various types of financial
awards.

Essentially, there are two methods for representing these semantics in XML: 1)
by defining a unique element for each variation on a general type – e.g.,
ShippingAddress, MailingAddress, etc. could all be child elements of a Person
element or complex type, the structure of each being defined by a single
AddressType complex type – and 2) by defining a generic complex element that
has, as a child, a “type” element or attribute that indicates context or usage and,
if necessary, constraining the element or attribute by an enumerated list of
acceptable values – e.g. include a Type attribute as part of the AddressType
complex type, which has an enumerated list of values like Home, Work, etc.

Both of these methods are valid and advantageous in specific situations. Defining
unique elements, for example, tightly constrains the schema, allowing business
rules to be validated the parser. The advantage of the second method is a
generic and flexible structure that can be used in a number of instances.

 10

Since each of these methods has its place, knowing when to employ the proper
technique is largely a modeling decision requiring thorough analysis to
understand the business use of the element(s). Specifically, modelers should
consider whether or not the similar elements have structural differences or
differences in data requirements between them and the business semantics of
the element(s) vis-à-vis the parent element.

These points are covered in more detail in the sections that follow. Included are
guidelines regarding which XML technique to employ based on specific
requirements.

2.2.3.1 Elements with Structural Differences
When similar objects have structural differences, preference should be given to
defining each object separately. The rationale for this approach is that they are
separate entities despite some common elements or usage. From an object-
oriented perspective, these may be subclasses of a common super class, or they
may be separate classes that implement the same interface. In either case, they
are separate classes that should be modeled as such.

In the financial aid domain, for example, a student could be applying for multiple
financial aid awards. Since each of these awards has its own data requirements
and processing logic, each is modeled as a separate child element, as the
following XML representation reflects.

<xsd:element name="Student" type="StudentType"/>
 <xsd:complexType name="StudentType">
 <xsd:sequence>
 <xsd:element name="DLAwardSub" type=" DLAwardSubType" minOccurs="0"/>
 <xsd:element name="DLAwardPLUS" type=" DLAwardPLUSType" minOccurs="0"/>
 <xsd:element name="PellAward" type=" PellAwardType" minOccurs="0"/>
 <xsd:element name="CampusBasedAward" type=" CampusBasedAward Type"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

2.2.3.2 Understand Child Element Semantics
Child elements should be defined in a manner that preserves their business
semantics vis-à-vis their parent element. For example, while all addresses are
essentially the same from a conceptual and structural standpoint, when defined
as a child of another element, such as a student or a loan guarantor, an address
assumes additional semantics that may need to be captured. Understanding how
the child element relates to its parent, both structurally and within the context of a
business transaction, will help in determining what additional information, if any,
needs to be captured, as well as the proper XML modeling technique to employ.

 11

2.2.3.3 Tightly Constrained Relationships
If the relationship between a child element and its parent needs to be constrained
in terms of cardinality or to enforce business rules, explicit child elements should
be used whose names convey the nature of the relationship.

For example, suppose that a Business may have multiple addresses, but that
each address is always either a Billing Address, a Shipping Address, or a Mailing
Address. Furthermore, suppose that a Mailing Address is always required.

This can be represented most accurately and efficiently with 3 separate child
elements of Business – MailingAddress, BillingAddress, and ShippingAddress –
each of which is of type AddressType, as reflected below.

<xsd:element name="Business" type="BusinessType"/>
 <xsd:complexType name="BusinessType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="MailingAddress" type="AddressType"/>
 <xsd:element name="BillingAddress" type="AddressType" minOccurs="0"/>
 <xsd:element name="ShippingAddress" type="AddressType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="AddressType">
 <xsd:sequence>
 <xsd:element name="Street" type="xsd:string" maxOccurs="3"/>
 <xsd:element name="City" type="xsd:string"/>
 <xsd:element name="State" type="xsd:string"/>
 <xsd:element name="PostalCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

This representation is superior to having a single repeatable Address element
that includes a “type” element since the context or use of each address is clearly
indicated. Furthermore, the business rule that at least one MailingAddress is
required for a business can be constrained in the schema. Reusability of the
address structure is still accomplished through the use of a complex type that is
used for each named element.

2.2.3.4 Conveying Ancillary Information
If the data that a child element conveys primarily refers to usage, description, or
other ancillary information that does not alter the basic relationship of the
element to its parent, a child, “type” element, constrained by an enumeration of
acceptable values, should be used.

For example, suppose that a Person may have multiple addresses, exactly as
the Business in the example above. In addition, a requirement exists that the
schema capture whether the address is a business or personal address.
Suppose further that this distinction does not alter the relationship of the address
to the person from the standpoint of the schema designer – i.e. an address

 12

still will be a MailingAddress, ShippingAddress, or BillingAddress, and whether
each address is personal or business is merely ancillary information. Given these
requirements, the AddressType complex type could be enhanced to include a
Type element (or attribute) that would be constrained by an enumerated list of
values indicating whether the address was Personal or Business.

2.3 Best Practices

2.3.1 General Design Considerations
The XML Forum schemas are oriented primarily toward data interchange. This
does not preclude designing schemas that have another primary orientation,
such as for presentation, but rather the primary focus is for data exchange. The
schemas are therefore data oriented, although in some cases they may mirror
paper business documents. For these reasons, the content model is oriented
toward semantics (or “content”) rather than presentation or structure (content
model contains some degree of presentation orientation mixed with semantics).

2.3.2 Schema vs. DTD
The World Wide Web Consortium XML Schema Language recommendation
SHALL be used to describe data instead of DTDs. Similar choices have been
made by the Association of Retail Technology Standards (ARTS) and the
Australian Standard for Energy Transactions in XML (aseXML). The ASC X12
Reference Model for XML Design addresses schema design issues only, and
does not address DTDs.

XML Schemas SHALL be used for the following reasons.

1. XML Schemas are supported by the W3C, ebXML, and other
organizations.

2. XML Schemas support greater content and data type validation than

DTDs.

3. XML Schemas are stable and reached the W3C Recommendation status
as of May 2, 2001.

4. XML Schemas support open-ended data models (allow vocabulary

extensions and inheritance); DTDs do not.

5. XML Schemas provide a rich core of base data types; DTDs do not.

6. XML Schemas support data types and data type reuse via object-oriented-
like mechanisms; DTDs provide only limited support.

7. XML Schemas are well-formed XML documents; DTDs require an

understanding of the SGML syntax.

 13

Well developed XML Schemas can perform content checking that is largely
unavailable in DTDs. Since content or data checking is a large component of
many software development efforts, these efforts can be reduced with XML
Schemas.

Tools like XML Spy (from Altova, http://www.xmlspy.com/) support XML
Schemas and DTDs. A user can generate a “first cut” at an XML Schema based
on a DTD and continue to maintain the content model. Due to the advanced type
definitions that are available in XML Schemas, a user cannot maintain the
content model when converting an XML Schema to a DTD.

2.3.3 Use of Elements vs. Attributes
Deciding whether to model and encode information using an element or an
attribute is difficult. No universal rule exists and the debate often takes on
esoteric rather than technical overtones.

Since there is little difference between the two lexically, other criteria must be
used to decide when a value is "best" modeled as an element or as an attribute.

In the majority of circumstances, elements SHALL be used in the design of
PESC XML Forum Schemas since these schemas are oriented towards data
exchange. Institutions need a form of exchange that can be understood by
computers and humans alike, which elements, with their ability to reflect
hierarchical structure and order, more readily provide.

Attributes MAY be used to capture information that describes an element but is
not a constituent part of that element. Used in this manner, attributes capture
metadata – information that describes an element, such as a ID numbers, URLs,
types, and other references.

The following guidelines have been compiled from works by Eliot Kimber and C.
M. Sperberg-McQueen in order to assist in determining when to use an element
and when to use an attribute.

1. Determine if the data in question is fundamentally metadata or content.
Metadata is information that describes the container while content is the
information the container conveys.

a. Use an embedded element when the information you are recording
is a constituent part of the parent element.

b. Use an attribute when the information is inherent to the parent but
not a constituent part (one's head and one's height are both
inherent to a human being, but one's head is a constituent part and
one's height isn't -- you can cut off a person’s head, but not their
height).

 14

2. Determine the structural requirements for the data: does the data item
syntactically conform to the rules for attributes or does it require more
structuring?

a. Use embedded elements for complex structure validation.
b. Use attributes for simple data type validation.

3. Determine how the data is intended to be used – i.e. primarily for the
conveyance of domain information or for the processing of information.

a. Use elements to capture domain information since they can have
substructures, order, and are more readily extensible.

b. Use attributes for data processing information such as IDs or “key”
data since they can be easily located and processed.

4. Use attributes to stress the one-to-one relationship among pieces of
information, i.e., to stress that the element represents a tuple of
information.

To illustrate the recommended use of elements and attributes, consider a student
for which an id, name, and email address must be captured.

This information could be modeled using the following:

- All Elements (see Example-1A.xsd and Example-1A.xml)
- All Attributes (see Example-1B.xsd and Example-1B.xml)
- Or a combination of the two (see Example-2.xsd and Example-2.xml)

While all of these capture the same information, the structure used in the last
method is preferred since it incorporates several of the guidelines listed above.

The student’s name and email address are treated as content – “information the
container conveys” – since this is the domain information to be captured and
communicated. Both are modeled as child elements, providing a logical,
extensible structure. The NameType, for example, only contains a FirstName
element. This could later be expanded to include LastName and MiddleName
elements as well as attributes that capture metadata about the name – e.g.
whether or not the name is preferred, the name type, such as legal name,
maiden name, etc.

The id, on the other hand, is modeled as an attribute since, in this example, at
least, it is considered “key” data; making it more important for data processing
than for conveying information about the student.

Example-1A.xsd - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Example_1A"
 xmlns:Example-1A="http://schemas.pescxml.org/0100/Example_1A"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 15

 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:element name="Student" type="Example-1A:StudentType"/>
 <xsd:complexType name="StudentType">
 <xsd:sequence>
 <xsd:element name="ID" type="xsd:string"/>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Email" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example-1A.xml - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<Example-1A:Student
 xmlns:Example-1A="http://schemas.pescxml.org/0100/Example_1A"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_1A
 http://schemas.pescxml.org/0100/Sector/Example_1A/Example-1A.xsd">
 <ID>9906789</ID>
 <Name>Adam</Name>
 <Email>adam@smplu.edu</Email>
</Example-1A:Student>

Example-1B.xsd - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Example_1B"
 xmlns:Example-1B="http://schemas.pescxml.org/0100/Example_1B"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:element name="Student" type="Example-1B:StudentType"/>
 <xsd:complexType name="StudentType">
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="email" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:schema>

Example-1B.xml - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<Example-1B:Student
 id="9906789"
 name="Adam"
 email="adam@smplu.edu"
 xmlns:Example-1B="http://schemas.pescxml.org/0100/Example_1B"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_1B

http://schemas.pescxml.org/0100/Sector/Example_1A/Example-1B.xsd"/>

 16

Example-2.xsd - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Example_2"
 xmlns:Example-2="http://schemas.pescxml.org/0100/Example_2"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:element name="Student" type="Example-2:StudentType"/>
 <xsd:complexType name="StudentType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Email" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:schema>

Example-2.xml - (Use of Elements vs. Attributes)

<?xml version="1.0"?>
<Example-2:Student
 id="9906789"
 xmlns:Example-2="http://schemas.pescxml.org/0100/Example_2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_2
 http://schemas.pescxml.org/0100/Sector/Example_1A/Example-2.xsd">
 <Name>Adam</Name>
 <Email>adam@smplu.edu</Email>
</Example-2:Student>

2.3.4 Element vs. Type
Core components SHALL be defined as named types, and elements SHALL be
created from those types. Types allow for the re-use of a single definition of an
element or group of elements. A named type definition can be re-used by other
element definitions as-is, or it can be used to derive another type, including an
element definition with the same name (See Example-3.xml and Example-3.xsd).
Reusing element definitions in different documents assists in eliminating
confusion as to the format of a data item and its allowable contents. The
question "Are these the same or not?" is eliminated. This approach is
recommended in the ASC X12 Reference Model for XML Design. The
Association of Retail Technology Standards (ARTS) favors the use of named
types wherever the opportunity for reuse exists.

Example-3.xml - (Element vs. Type)

<?xml version="1.0"?>
<PESCXML:Directions
 xmlns:PESCXML="http://schemas.pescxml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org http://schemas.pescxml.org/Example-3.xsd">

 17

 <Location>
 <HouseNumber>2334</HouseNumber>
 <FirstStreet>PO BOX 1400</FirstStreet>
 <SecondStreet>Dayton</SecondStreet>
 <CityName>Madison</CityName>
 <State>WI</State>
 <ZipCode>53704</ZipCode>
 </Location>
 <Destination>
 <HouseNumber>1610</HouseNumber>
 <FirstStreet>RT 2</FirstStreet>
 <SecondStreet>Chicken Farm Road</SecondStreet>
 <CityName>Maxwell</CityName>
 <State>MI</State>
 <ZipCode>53786</ZipCode>
 </Destination>
 <Position>
 <HouseNumber>1220</HouseNumber>
 <FirstStreet>PO Box 724</FirstStreet>
 <SecondStreet>15 St</SecondStreet>
 <CityName>Bowler</CityName>
 <State>IL</State>
 <ZipCode>53111</ZipCode>
 </Position>
</PESCXML:Directions>

Example-3.xsd - (Element vs. Type)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org"
 xmlns="http://schemas.pescxml.org"
 elementFormDefault="unqualified">
 <xsd:element name="Directions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Location" type="AddressType"/>
 <xsd:element name="Destination" type="AddressType"/>
 <xsd:element name="Position" type="AddressType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="AddressType">
 <xsd:sequence>
 <xsd:element name="HouseNumber" type="xsd:string"/>
 <xsd:element name="FirstStreet" type="xsd:string"/>
 <xsd:element name="SecondStreet" type="xsd:string"/>
 <xsd:element name="CityName" type="xsd:string"/>
 <xsd:element name="State" type="xsd:string"/>
 <xsd:element name="ZipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

 18

New types MAY be derived from existing types providing the capability to extend
an element definition within the original type (See Example-4.xml and Example-
4.xsd). Derived types can be useful for organizations whose requirements for a
data item differ from requirements established within the PESC XML Forum
realm.

Example-4.xml - (Element vs. Type)

<?xml version="1.0"?>
<PESCXML:Directions
 xmlns:PESCXML="http://schemas.pescxml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org http://schemas.pescxml.org/Example-4.xsd">
 <Location>
 <HouseNumber>2334</HouseNumber>
 <FirstStreet>PO BOX 1400</FirstStreet>
 <SecondStreet>Dayton</SecondStreet>
 <CityName>Madison</CityName>
 <State>WI</State>
 <ZipCode>53704</ZipCode>
 </Location>
 <Destination>
 <HouseNumber>1610</HouseNumber>
 <FirstStreet>RT 2</FirstStreet>
 <SecondStreet>Chicken Farm Road</SecondStreet>
 <CityName>Maxwell</CityName>
 <State>MI</State>
 <ZipCode>53786</ZipCode>
 <CountryCode>CA</CountryCode>
 <PostalCode>POP 1K0</PostalCode>
 </Destination>
 <Position>
 <HouseNumber>1220</HouseNumber>
 <FirstStreet>PO Box 724</FirstStreet>
 <SecondStreet>Southwest Way</SecondStreet>
 <CityName>Bowler</CityName>
 <State>IL</State>
 <ZipCode>53111</ZipCode>
 </Position>
</PESCXML:Directions>

Example-4.xsd - (Element vs. Type)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org"
 xmlns="http://schemas.pescxml.org"
 elementFormDefault="unqualified">
 <xsd:element name="Directions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Location" type="AddressType"/>
 <xsd:element name="Destination"

 19

 type="InternationalAddressType"/>
 <xsd:element name="Position" type="AddressType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="AddressType">
 <xsd:sequence>
 <xsd:element name="HouseNumber" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="FirstStreet" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="SecondStreet" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="CityName" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="State" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ZipCode" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="InternationalAddressType">
 <xsd:complexContent>
 <xsd:extension base="AddressType">
 <xsd:sequence>
 <xsd:element name="CountryCode" type="xsd:string"/>
 <xsd:element name="PostalCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

In addition, when defined as a type, an item's requirements MAY vary between
Nillable and non-Nillable. Nil provides a way to specify that an element has no
value in an individual document instance (see Example-5.xml and Example-
5.xsd).

Example-5.xml - (Element vs. Type)

<?xml version="1.0"?>
<PESCXML:Directions
 xmlns:PESCXML="http://schemas.pescxml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org http://schemas.pescxml.org/Example-5.xsd">
 <Location>
 <HouseNumber>1220</HouseNumber>
 <StreetAddress>
 <FirstStreet>Mississauga Avenue</FirstStreet>
 <SecondStreet xsi:nill="true"></SecondStreet>
 </StreetAddress>
 <CityName>Auckland</CityName>
 <State>NJ</State>
 <ZipCode>06743</ZipCode>

 20

 </Location>
</PESCXML:Directions>

Example-5.xsd - (Element vs. Type)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org"
 xmlns="http://schemas.pescxml.org"
 elementFormDefault="unqualified">
 <xsd:element name="Directions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Location" type="AddressType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="AddressType">
 <xsd:sequence>
 <xsd:element name="HouseNumber" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="StreetAddress" nillable="true"
 type="StreetAddressType"/>
 <xsd:element name="CityName" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="State" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ZipCode" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="StreetAddressType">
 <xsd:sequence>
 <xsd:element name="FirstStreet" type="xsd:string"/>
 <xsd:element name="SecondStreet" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

2.3.5 Hide vs. Expose Namespaces
Schemas SHALL be designed to hide Namespaces. Hiding Namespaces
provides for XML instance documents that are relatively easy to read and
understand, most notably when Schemas import definitions from another
namespace. (See Example-6.xml, Example-6.xsd, Sector-6.xsd, and Core-6.xsd
- An XML Document and Schema with Namespaces hidden, and Example-7.xml,
Example-7.xsd, Sector-7.xsd, and Core-7.xsd - An XML Document and Schema
with Namespaces exposed.) Hiding namespaces moves the complexity of a
document's framework to the Schema level. Restricting instance documents to a
single namespace qualifier at the root level follows the recommendation of the
ASC X12 Reference Model for XML Design.

 21

Example-6.xml - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<Example6:BorrowerInfo
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:Example6="http://schemas.pescxml.org/0100/Sector/Example_6"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_6
http://schemas.pescxml.org/0100/Sector/Example_6/Example-6.xsd">
 <Person>
 <Name>John Mack</Name>
 <SSN>123-45-6789</SSN>
 <EnrollmentStatus>Full Time</EnrollmentStatus>
 </Person>
</Example6:BorrowerInfo>

Example-6.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Example_6"
 xmlns:Example6="http://schemas.pescxml.org/0100/Sector/Example_6"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 attributeFormDefault="unqualified"
 elementFormDefault="unqualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Core"
 schemaLocation="http://schemas.pescxml.org/0100/Core/core-6.xsd"/>
 <xsd:import namespace="http://schemas.pescxml.org/0100/Sector"
 schemaLocation="http://schemas.pescxml.org/0100/Sector/sector-6.xsd"/>
 <xsd:element name="BorrowerInfo">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" type="sector:PersonType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Sector-6.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Sector"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Core"
 schemaLocation="http://schemas.pescxml.org/0100/Core/core-6.xsd"/>
 <xsd:complexType name="PersonType">

 22

 <xsd:complexContent>
 <xsd:extension base="core:PersonType">
 <xsd:sequence>
 <xsd:element name="EnrollmentStatus" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

Core-6.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Core"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="PersonType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="SSN" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example-7.xml - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<Example_7:BorrowerInfo
 xmlns:Example_7="http://schemas.pescxml.org/0100/Sector/Example_7"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_7
http://schemas.pescxml.org/0100/Sector/Example_7/Example-7.xsd">
 <Example_7:Person>
 <core:Name>John Mack</core:Name>
 <core:SSN>123-45-6789</core:SSN>
 <sector:EnrollmentStatus>Full Time</sector:EnrollmentStatus>
 </Example_7:Person>
</Example_7:BorrowerInfo>

Example-7.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org/0100/Example_7"
 xmlns="http://schemas.pescxml.org/0100/Example_7"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 attributeFormDefault="qualified"

 23

 elementFormDefault="qualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Core"
 schemaLocation="http://schemas.pescxml.org/0100/Core/core-7.xsd"/>
 <xsd:import namespace="http://schemas.pescxml.org/0100/Sector"
 schemaLocation="http://schemas.pescxml.org/0100/Sector/sector-7.xsd"/>
 <xsd:element name="BorrowerInfo">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" type="sector:PersonType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Sector-7.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org/0100/Sector"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Core"
 schemaLocation="http://schemas.pescxml.org/0100/Core/core-7.xsd"/>
 <xsd:complexType name="PersonType">
 <xsd:complexContent>
 <xsd:extension base="core:PersonType">
 <xsd:sequence>
 <xsd:element name="EnrollmentStatus" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

Core-7.xsd - (Hide vs. Expose Namespaces)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org/0100/Core"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <xsd:complexType name="PersonType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="SSN" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Additionally, maintenance is easier as it is possible to change a Schema without
impact to instance documents. Take, for example, the case of a Schema that

 24

imports component definitions from another namespace. If the imported
definitions are moved to within the Schema that had been importing those
definitions, or an additional Schema is added to those Schemas already
supporting the instance document, every instance document requires updating
with those changes.

2.3.6 Local vs. Global
It is RECOMMENDED by the Technology Work Group to use xFront’s Venetian
Blind Design paradigm. This design paradigm, which is well described on
xFront’s web site (http://www.xfront.com/GlobalVersusLocal.pdf accessed on
April 24, 2003), supports reuse of type definitions and namespace hiding.
xFront’s Venetian Blind Design paradigm focuses on the development of types,
which are then used as components for the main element.

By comparison, xFront describes two other design paradigms – the Russian Doll
Design and the Salami Slice Design. The Russian Doll Design calls for an XML
Schema that mirrors the instance document. The schema is bundled, like a set
of Russian doll containers, one inside the other. This paradigm is compact but
does not allow for type reuse and hence is largely impractical.

xFront’s Salami Slice Design is entirely opposite of the Russian Doll Design.
Each component is separately called and joined together in the end, like a salami
sandwich. This approach provides for type reuse but does not allow developers
to hide namespace complexities.

xFront’s Venetian Blind Design paradigm focuses on the development of
reusable types which are then used as components for the main element. The
following example is a schema using the Venetian Blind Design paradigm (See
Example-8.xml and Example-8.xsd). In this example, a library is made up of one
to many books. Here, the main element is a “Library”, which is made up of the
base type “BookRecordType”. Note that the data types “EmptyType”, “US-
StateType”, and “StreetAddressExampleType” can be used in many different
ways. They are the building blocks for the main record “BookRecordType”.

Example-8.xml - (Local vs. Global)

<?xml version="1.0"?>
<PESCXML:Library
 xmlns:PESCXML="http://schemas.pescxml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.pescxml.org http://schemas.pescxml.org/Example-8.xsd">
 <Book>
 <Author>Ron Johnson</Author>
 <Title>Don't Step in That!</Title>
 <Cost>35</Cost>
 <Quantity>50</Quantity>
 <State>MD</State>
 <Street>1220 North 15 Street</Street>

 25

 <USInd></USInd>
 </Book>
 <Book>
 <Author>Mildred Frank</Author>
 <Title>Golly, If I Only Had a Computer</Title>
 <Cost>52</Cost>
 <Quantity>175</Quantity>
 <State>VA</State>
 <Street>1610 North 11 Street</Street>
 <USInd></USInd>
 </Book>
</PESCXML:Library>

Example-8.xsd (Local vs. Global)

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.pescxml.org"
 xmlns="http://schemas.pescxml.org"
 elementFormDefault="unqualified">
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Book" type="BookRecordType"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="BookRecordType">
 <xsd:annotation>
 <xsd:documentation>Many records containing book
 data</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Author" type="xsd:string"/>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Cost" type="xsd:float" minOccurs="0"/>
 <xsd:element name="Quantity" type="xsd:integer"
 minOccurs="0"/>
 <xsd:element name="State" type="US-StateType"/>
 <xsd:element name="Street" type="StreetAddressExampleType"
 minOccurs="0"/>
 <xsd:element name="USInd" type="EmptyType"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="EmptyType">
 </xsd:complexType>

 <xsd:simpleType name="US-StateType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="MD"/>

 26

 <xsd:enumeration value="OH"/>
 <xsd:enumeration value="VA"/>
 <xsd:enumeration value="NC"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="StreetAddressExampleType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="2"/>
 <xsd:maxLength value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

2.3.7 Namespaces - Zero, One or Many
The following are RECOMMENDED by the Technology Work Group.

• The Core schema SHALL specify its own namespace as its
targetNamespace.

• All Sector schemas SHALL specify their own namespace as their
targetNamespace.

• Each instance document schema SHALL specify its own namespace as
its targetNamespace.

• References to components used within a schema (simpleTypes,
complexTypes, etc.) from the W3C's XML Schema definition are qualified
with xsd:.

• In situations where a PESC schema reuses components defined in a
schema in another namespace, Import SHALL be used. Import allows a
schema to reference a portion of another schema that resides in a
namespace different from that of the referencing schema. This directly
supports the PESC model of a schema hierarchy (Core, Sector, Instance
Document).

This tiered, hierarchical approach is similar to that described in a preliminary
recommendation in the ASC X12 Reference Model for XML Design.

See Example-9.xml, Example-9.xsd, Sector-9.xsd, and Core-9.xsd (below).

Example-9.xml - (Namespaces - Zero, One or Many)

<?xml version="1.0"?>
<Example-9:BorrowerInfo
 xmlns:Example9="http://schemas.pescxml.org/0100/Sector/Example_9"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.pescxml.org/0100/Sector/Example_9
http://schemas.pescxml.org/0100/Sector/Example_9/Example-9.xsd">
 <Person>
 <Name>John Mack</Name>
 <SSN>123-45-6789</SSN>
 <EnrollmentStatus>Full Time</EnrollmentStatus>

 27

 </Person>
</Example-9:BorrowerInfo>

Example-9.xsd - (Namespaces - Zero, One or Many)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Example_9"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Sector"
schemaLocation="http://schemas.pescxml.org/0100/Sector/sector-9.xsd"/>
 <xsd:element name="BorrowerInfo">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" type="sector:PersonType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Sector-9.xsd - (Namespaces - Zero, One or Many)

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Sector"
 xmlns:sector="http://schemas.pescxml.org/0100/Sector"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:import namespace="http://schemas.pescxml.org/0100/Core"
schemaLocation="http://schemas.pescxml.org/0100/Core/core-9.xsd"/>
 <xsd:complexType name="PersonType">
 <xsd:complexContent>
 <xsd:extension base="core:PersonType">
 <xsd:sequence>
 <xsd:element name="EnrollmentStatus"
 type="sector:EnrollmentStatusType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:simpleType name="EnrollmentStatusType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Core-9.xsd - (Namespaces - Zero, One or Many)

 28

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://schemas.pescxml.org/0100/Core"
 xmlns:core="http://schemas.pescxml.org/0100/Core"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="PersonType">
 <xsd:sequence>
 <xsd:element name="Name" type="core:NameType"/>
 <xsd:element name="SSN" type="core:SSNType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="NameType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="15"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SSNType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="11"/>
 <xsd:maxLength value="11"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

The XML Forum SHOULD NOT use the Redefines option when defining its
Schemas. A Schema Redefine operation performs an implicit Include
operation. All of the components in the Schema that are the object of the
Redefine are Included in the Schema performing the Redefine. However,
Redefine takes things farther than Include by allowing the Schema performing
the Redefine to extend or restrict components in the Redefined Schema. Most
likely this will not be necessary for the generic PESC definitions.

Use of Redefines, however, MAY be advantageous for use by an organization
that has additional requirements for a data item which fall outside the
requirements defined in the PESC Schema. Like Include, Redefines can be
used for any Schema that does not have a targetNamespace. This allows an
entity to Redefine (ie., Include) a PESC component schema, but modify that
Schema with its own extensions/requirements.

2.3.8 Nulls, Zeroes, Spaces, and Absence of Data
The following rules SHALL apply in designing schemas and interpreting instance
documents.

1. Absence of data - If an element is defined as OPTIONAL (minOccurs
attribute value of zero) and the element does not occur in an instance
document, semantics SHALL NOT be interpreted from the element other

 29

than that the originator of the instance document did not include it. No
default values are to be assumed. Likewise, if an attribute is declared as
OPTIONAL (“use” attribute value of OPTIONAL) and the attribute does not
occur in an instance document, semantics SHALL NOT be interpreted
from the attribute other than that the originator did not include it. No
default values are to be assumed.

NOTE: All string items defined with a minOccurs of one SHALL have a

minimum length requirement of one character.

2. Zeroes - Zeroes, when appearing in a numeric element in an instance
document, SHALL be interpreted as a zero value.

3. Spaces sent as values for elements or attributes (of type string) in

instance documents SHALL be interpreted as spaces. Sending an
element with just spaces is not the same as sending a nulled element (see
#4 below). It is RECOMMENDED that leading and trailing spaces be
removed. If present they SHALL NOT have semantic significance; senders
SHOULD assume that receivers will trim leading and trailing white space
when processing. The Schema token datatype SHALL be used if there is
a requirement to transmit at least one nonspace character and two or
more embedded spaces are not permitted in the element or attribute. The
schema whiteSpace facet SHALL not be used (other than with its default
"preserve" value) since the "collapse" value converts contiguous spaces to
a single space.

4. Nullability - In certain cases, it MAY be desirable to convey that an

element has no value (a null value) rather than indicating that it has a
value of spaces or that it is not present in a document. In these cases, the
originator of the instance document SHOULD convey explicitly that an
element is null. An example is an address update for a previously
transmitted address. The previous address had two address lines,
whereas the current address has just one line. The originator of the
document indicates that the second address line is removed by indicating
that the element is nulled as follows:

<AddressLineTwo xsi:nill="true"></AddressLineTwo>

To support this the AddressLine element in the schema is defined as
nullable via:

<xsd:element name="AddressLine" type="xsd:string" nillable="true"/>

When this type of nullable semantics are desired, the "nill" and "nillable"
attributes SHALL be used (as opposed to spaces for strings or zeroes for
numerics). The "nillable" attribute SHALL NOT be used in element
declarations with a minOccurs of greater than zero. When there is a

 30

requirement that an element be OPTIONAL and not appear in an instance
document, the minOccurs attribute with a value of zero SHALL be used in
the element declaration. By default, any element defined in analysis as
having a minimum occurrence of zero SHALL be represented in the
schemas as nullable.

The ASC X12 Reference Model for XML Design contains similar
recommendations.

2.3.9 Other Considerations

1. Permissive vs. Restrictive - Schemas SHALL be restrictive, i.e., the “ANY”

content model is restricted to extension hooks.
Rationale: Schemas are intended for data interchange, with data content
to be fully defined. This approach is favored by the Australian Standard
for Energy Transactions in XML.

2. Use of Notation - Notations to define data types or file types SHALL NOT
be used.
Rationale: Simplicity. Base XML schema features should provide all
necessary functionality. This also matches the ASC X12 Reference Model
for XML Design.

3. Unparsed Entities – Unparsed entities SHALL NOT be supported.
Rationale: Simplicity (requires use of Notation). No present requirement
to handle or reference non-XML data sources.

4. Mixed Content – Mixed content SHALL NOT be permitted in schema
definitions, (i.e., an element with children SHALL NOT also have a text
value).
Rationale: XML Forum schemas are oriented toward data exchange and
mixed content is contrary to most established data modeling philosophies.
The ASC X12 Reference Model for XML Design makes the same
recommendation.

3 XML Schema Development Roadmap
The roadmap for schema development relies on the interaction of the Core
Components and Technology Work Groups within the XML Forum. This section
describes the interaction of those groups for the development of new XML
Schemas and the update and maintenance of existing XML Schemas

1. The Core Components Work Group forwards a spreadsheet for a
dictionary (described earlier in this document) of related items to the
Technology Work Group. These related items may comprise all data
elements for the following.

 31

• the community (the "parent" dictionary),
• a given business domain (a "sector library"),
• a document or message, or
• an aggregate.

Sector libraries, documents, messages, and aggregates should be
represented on spreadsheets separate from the parent dictionary.

2. The Technology Work Group creates XML Schemas appropriate to the
scope of the items represented on the submitted spreadsheet. Base XML
Schema types common to the PESC community are defined in the parent
dictionary. The parent dictionary schema may not correspond to an actual
XML message set or document. When working with a dictionary for a
business domain, a sector library is created if the requirements of that
domain cannot be met by the definitions contained in the parent dictionary.
Where applicable and appropriate, the Technology Work Group will use
existing base Schema types. These existing types may be defined in the
parent dictionary, sector library, or by other standards such as ISO. New
base Schema types are created only as necessary - if the type does not
exist in the parent or sector library, or if an existing type in the parent or
sector library does not meet all requirements specified by the sector library
dictionary.

3. There are cases where an existing dictionary is updated with new
elements, the requirements for an existing element change, or one or
more elements are removed. To accommodate these maintenance
situations, a new spreadsheet with the changes highlighted is provided to
the Technology Work Group, and steps 1 and 2 are repeated as
necessary to update the applicable Schema(s). The Technology Work
Group will monitor maintenance situations for the potential to eliminate a
sector schema and/or sector-specific element definitions due to changes
in requirements.

4. After creating an initial XML Schema for a document or message, the
Technology Work Group creates at least two instance documents, a
"typical" document and a "complete" document. The "typical" document
shows how an instance document appears when all of the required fields,
and some of the optional fields, exist. The "complete" document illustrates
the instance document when all fields, required and optional, exist. These
instance documents are used to both validate that the structure expressed
by the corresponding Schema is correct, and that the instance document
is indeed valid as per the Schema. Schemas and instance documents
may be validated via the tool used to create them, and by a validating XML
parser.

5. The Core Components Work Group reviews the "typical" and "complete"
instance documents. Suggestions and corrections are returned to the

 32

Technology Work Group. The Technology Work Group reviews
suggestions and corrections, and makes appropriate changes to the
schema and sample instance documents. This step is repeated as often
as necessary to provide example instance documents that effectively
illustrate the data structures described by the Schema(s).

6. If there are multiple uses for the data group(s) described by a schema.

The Core Components Work Group advises the Technology Work Group
as to the contents of each set of example instance documents that
illustrate a particular data exchange for a message set.
(example: For the various applications of the Common Record, or the
varied CommonLine message sets, a set of instance documents
illustrating each document/message set is created.)

7. The Technology Work Group creates instance documents with the
contents defined by the Core Components Work Group in Step 6. These
documents and their corresponding Schemas pass through the
procedures in steps 4 and 5 as often as necessary. When approved by
the Core Components Work Group, these example documents serve not
only as illustrations, but may also be used by business partners to test the
electronic portion of data exchange agreements.

8. Once accepted by the Core Components Work Group, the Schemas are

considered ready for release to the community. The Architectural Chair
solicits comments from the full Forum and then forwards a copy with
comments to the Steering Committee for final approval. Upon approval,
XML Schemas will be released and published to
http://schemas.PESCXML.org.

4 Implementation Recommendations

4.1 Why This Section?
The primary goal of the PESC XML Forum is to create XML schemas to enable
common documents to be exchanged in the postsecondary education
environment. However, in addition to this requirement, PESC members are also
seeking guidance regarding how to implement XML and related technologies on
the public Internet. Of primary interest to the Forum is helping its members
follow a degree of uniformity so that their implementations are interoperable.
This section presents a set of recommendations, accompanied by rationale,
which should assist PESC members in making implementation decisions.

Many of the issues outlined in Section 4 are being addressed by the
Postsecondary Electronic Standards Council’s Web Services Workgroup. The
XML Forum will monitor the work of that group, and refer to their work as it
becomes available.

 33

4.2 General Requirements
There are a number of general requirements that may influence many technology
decisions. This section captures some of the more important requirements.

• Cost - Keeping implementation costs low is a very important consideration
for most PESC members.

• Time frame - The Forum has identified two separate time frames around
which to make recommendations. Recognizing that some PESC
members will be implementing in the next few months, there is a short-to-
near term time frame that anticipates minimal changes in existing
systems. In addition, the Forum anticipates that systems may evolve as
XML and related technologies continue to develop. Therefore, we have
included a long-term time frame on most recommendations.

• Compatibility with existing systems - Compatibility with existing systems is
of high importance in the short term. For the longer term this is a
secondary consideration.

• Open Source - Public domain, open source software shall be considered
as an option where it is available, but this is a secondary consideration.

• Standard vs. Proprietary solutions - The Forum will only recommend
solutions that are based on standards from internationally or nationally
accredited standards organizations, or recommendations from leading
industry consortiums such as the World Wide Web Consortium (W3C).
Solutions based on a single vendor's proprietary approach SHALL NOT be
recommended.

The Technology Work Group has identified a number of use cases for which
these recommendations are targeted.

• School to school transcript exchange - In response to requests received
by a variety of means, a school batches a set of transcripts and sends
them to another school. A third party, such as an EDI Server, may or may
not be involved.

• School to agency or organization IPEDS reporting - Aggregate enrollment
information, faculty, facility. These may be batch or real-time, TBD.

• School to Department of Education direct loan application - loan
origination and disbursement. Batch and near real-time single
applications.

• Meteor - Initiated by borrower or financial aid officer, a Meteor-enabled
site goes to the National Student Clearinghouse, finds out who the loan
holders are, sends inquiries to holders about the specific loans held by a
borrower, receives responses, and displays them to the requester. Real-
time application.
NOTE: We are concerned with what happens between the Meteor

enabled site and the clearinghouse & loan holders.
• Organization to school test score reporting - An organization such as the

ETS sends test scores in batch to a school.

 34

• School reporting non-administrative student data to outside organizations
such as INS, state departments of health.

The following use cases are not within our scope:

• Interdepartmental exchange of student administrative data (campus to
campus exchange within the same system may be within scope)

• School procurement with suppliers
• School Accounting and budgeting
• Development

4.3 Message Handling

4.3.1 Requirements

• Packaging - A means must be provided to allow multiple XML documents
to be packaged into one unit for transport.

• Network protocol - IP over the public Internet must be supported.
• Reliable delivery (once and only once) through software - This is not a

near term requirement. It is expected that exceptions from overdue or
duplicates will be handled by business applications or manual methods
and not the communications/messaging software.

• Return Receipts - This is the ability of the messaging system to
automatically generate return receipts upon receipt of a message.
Generally, this is a "nice to have", but is not a high priority short-term
requirement since current systems may not be able to support return
receipts. It is expected that business applications will handle return
receipts at a business document level where they are required (in other
words, at the business application level rather than at the protocol level).

• Routing (identification internal sender & receiver) - There may be a
requirement to provide the ability to route documents to an internal
business application once they have been received by an organization.
However, we are not certain that this functionality is needed and request
input and comment.
(example: all documents for a university might be sent to
xml@university.edu, but transcripts and loan information might need to be
sent do different business applications.)

• Error handling and reporting through software - This pertains to providing
error handling and reporting being provided by the messaging system.
Again, these are generally "nice to have", but not a high priority short-term
requirement since current systems may not be able to support them. It is
expected that business applications will provide this functionality where
required.

• Automated restart and recovery - "Nice to have" but not a high priority.
• Audit trails - "Nice to have" but not a high priority.

 35

• Ability to specify or request quality of service - This is not considered to be
a near term requirement.

• Platform independence - This is a high priority since it is expected that
many different platforms will be used.

For more information and discussion, refer to ebXML Transport Routing and
Packaging Overview and Requirements at http://ebXML.org/specs/esreq.pdf.

4.3.2 Options and Near Term Recommendations

Packaging

• UNIX tar
• Pros - Easily invoked by scripts. Universal implementations on all

UNIX platforms
• Cons - Though utilities may be available on other platforms, these may

not be commonly installed.
• Zip

• Pros - Easily invoked by scripts. Commonly available on Intel/Win32
platforms.

• Cons - Though utilities may be available on other platforms, these may
not be commonly installed.

• MIME
• Pros - Default packaging if using multiple attachments with most SMTP

mailers.
• Cons - Not as well supported if not using an SMTP mailer.

• SOAP
• Pros - Designed specifically for XML support.
• Cons - Has not progressed to a full W3C recommendation. Not

currently widely supported in commercial, off-the-shelf products
(mostly widely available as software development kits). SOAP with
attachments (SOAP Messages with Attachments, W3C Note 11
December 2000, http://www.w3.org/TR/SOAP-attachments) may be
advantageous, but this is not fully supported in the latest SOAP
specification.

• ebXML
• Pros - Meets all packaging and routing requirements as well as

security requirements.
• Cons - Little commercial support as yet; complex; dependent on SOAP

with attachments.
• X12 996 File Transfer Transaction Set

• Pros - Compatible with existing EDI Server.
• Cons - Most likely will require X12 capable EDI system. Attention must

be paid to using X12 delimiters that aren't used in the XML syntax.
• SMTP - Multipart MIME attachments

 36

• FTP and HTTP - Either Tar or Zip.
NOTE: FTP may not need packaging with mput and mget if files are

sent to or retrieved from unique directories.
• EDI Server - X12 996 Transaction Set

Recommendation: Dependent on chosen file transport protocol and system

Network Protocol

• IP over the public Internet is recommended.

Supported file transfer methods (based on using IP)

• FTP
• Pros - Implementations on most platforms. Provides for immediate

flagging of transmission failures. Easily invoked by scripts.
• Cons - Must set up session with source or target (i.e., cannot operate

in a store-and-forward or asynchronous fashion). Not well suited to
situations that might require very fast response time.
Username/password or anonymous logins are possible security
vulnerabilities.

• SMTP
• Pros - Implementations on most platforms. Store-and-forward model

allows for asynchronous delivery.
• Cons - Some mail systems may limit the size of attachments. Some

systems may have problems with multiple attachments. Not as easily
scripted as FTP. No immediate notification of delivery failure or
delays.

• HTTP (Post and Fetch)
• Pros - Browser implementations on nearly every platform; server

implementations on most platforms. Allows for fast response times.
Session security available with HTTPS

• Cons - Not easily scripted or integrated with existing business
applications; may require human action.

• Kermit, Xmodem or other TELNET or terminal session based protocol
• Pros - Lowest common denominator, widely available.
• Cons - Not as easily scripted or integrated with existing business

applications, may require human action, username/password security
vulnerability, performance not as good as other options.

Recommendation:
• FTP vs. SMTP - Discussion needed. Leaning toward FTP since it offers

immediate notification of delivery errors. FTP or SMTP may be more
appropriate for unattended operation.

 37

• HTTP for business applications suited to a human running a browser, with
relatively small file sizes.

Reliable Delivery

• There are no suitable options in the near term.

Return Receipts

• Some SMTP servers support return receipts, although not all do. FTP
provides immediate notification of successful transmission. Beyond these,
there are no suitable options in the near term.

Routing

• Separate destination address for each business application
(example: transcripts@myuniversity.edu for transcripts, and
financialaid@myuniversity.edu for financial aid)
• Pros - Relatively easy to set up if there are a small number of

destinations. Requires no special inner envelope.
• Cons - Complex if there are a large number of internal destinations

• X12 envelope
• Pros - Compatible with existing EDI Server.
• Cons - Most likely will require X12 capable EDI system.

• ebXML
• Pros - Meets all packaging requirements as well as security

requirements.
• Cons - Little commercial support as yet. Dependent on SOAP with

attachments.
• Extensions to SOAP header (similar to ebXML)

• Pros - Designed specifically for XML support.
• Cons - Has not progressed to a full W3C recommendation. Not

currently widely supported in commercial, off-the-shelf products.

Recommendation:
• For traffic not going through EDI Server, use separate destination

addresses for each business application
• For traffic going through EDI Server, use X12 996.

Software-based error handling and reporting

• There are no suitable options in the near term.

Automated restart and recovery

 38

• There are no suitable options in the near term.

Audit trails

• There are no suitable options in the near term.

Quality of Service (QOS)

• This is not considered to be a requirement in the near term.

Alignment with Frameworks (a.k.a. Web Services architectures)

• ebXML
• Pros: Non-proprietary
• Cons: May have more features than needed in some areas, and not

enough in others. Few commercial implementations as yet.
• Microsoft .NET

• Pros: Commercial implementation
• Cons: Proprietary. Limited support outside of Intel/Win32 platform.

Recommendation:
• Do not align with or support any particular framework at this time, in the

near term.

4.3.3 Long Term Recommendations
It is premature at this time to make long term recommendations. The XML
Forum will watch the trends and see how they develop. SOAP appears, at this
time, to be the XML/IP message handling option most likely to gain widespread
market acceptance due to its association with W3C. However, the ebXML
message handling service is more capable, and several major vertical industry
associations have adopted it.

4.4 Security

4.4.1 Requirements
The scope of these requirements is limited to exchanges of information between
organizations. Specific security requirements may vary depending on the
information being transmitted, business processes, business applications, and
the institution. For example, FERPA does not require any specific technologies,
but leaves it to institutions to select the technologies, according to their own
requirements, that enable them to comply with the act. In addition, some
institutions may require verification of receipt, while others may not.

In this section we identify some general considerations regarding security and
attempt to identify some preliminary requirements.

 39

4.4.1.1 General Considerations
One useful way to assess security issues is to consider the following factors.

• Risk areas - What are the general types of things (events, resources) that
are at risk?

• Risk exposure - What is the potential damage that could be incurred if a
risk event happens?

• Risk probability - What is the likelihood that a risk event will happen?

Once these are determined, appropriate countermeasures or remediation
strategies may be determined.

In a classic model of computer security, the following areas generally address
most risks:

• Integrity - Systems and data integrity are maintained. In the areas being
addressed, this generally means that the receiver receives data as the
sender, without alteration, has transmitted it. There are also concerns
with integrity of the business transaction, the intentional breach of which
might be considered as fraud.

• Confidentiality - Systems and data are protected from unauthorized
access. The primary concern is maintaining the confidentiality of data
while in transmission.

• Availability - Systems and data are available when needed. There are
generally no concerns with this aspect of security, though they may be
affected by general risks such as "denial of service" attacks.

4.4.1.2 Security Considerations
Typical risk events and security considerations that may be of concern in
document exchanges between institutions are listed below, with an initial
assessment of risk probability and exposure. The requirements are generally the
same for admissions and records related data (transcripts, applications, test
scores, etc.) and financial aid data.

• Transmission Confidentiality - There are external requirements to keep
certain information confidential from the general public. For example, the
Family Educational Rights and Privacy Act (1974) requires that institutions
keep student information reasonably confidential. Placing information like
this "in the clear" on the public Internet may violate such requirements. It
is the belief that most XML Forum messages may be subject to such
requirements, therefore this is a high probability risk area. Breach of
statutory or regulatory confidentiality requirements may involve criminal or
civil liability, with associated fines or penalties. Transmission
confidentiality is of high concern.

• Persistent confidentiality – Persistent confidentiality is concerned with
maintaining the confidentiality of a transmitted document after it has been

 40

received (or before it is transmitted). Since the XML Forum is primarily
concerned with formats of data for interchange and in facilitating
interchange, this topic is beyond our immediate scope.

• Fraud - Fraud can be considered a breach of transaction integrity. Fraud
can include events such as the following.
• Third party assumes identity of sender and transmits an invalid or

bogus message. In general, we regard this as unlikely but request
verification. Risk exposure may vary widely depending on the
business area. The probability for exposure are low for admissions
and records information, but may be somewhat higher for student loan
information.

• Third party assumes identity of receiver and intercepts message.
Again, not very likely but request verification. Risk exposure may also
vary, however, when financial or personal information such is involved,
the probability and exposure may be higher.

• Sender denies sending a transmission - This area is of high concern.
• Receiver denies receiving transmission - This area is of low concern.
• Transmission altered - Unlikely, but request verification. Again, the

exposure may vary depending on the business area.
• Signature requirements - There are legal means to make electronic

signatures have the same legal force as written signatures. There may
be circumstances in which an institution is required to pass along to
another institution the electronic signature of an individual (or an indication
that the individual has signed a document), but the specifics about
requirements for institutions to sign documents exchanged with other
institutions is unknown. For example, a lender may be required to pass
along to a guarantor the electronic signature of a loan applicant, but the
lender may not itself need to sign the loan application. In cases where an
institution is acting as a third party, as in the case of on the behalf of a
student or borrower with Sallie Mae, it may need to authenticate the end
user. However, these types of "transitive trust" problems are beyond the
immediate scope of this specification.

4.4.1.3 Countermeasures and Remediation Strategies
Various types of countermeasures or remediation strategies may be appropriate
depending on the risk probability and exposure. Not all of these necessarily
need to be handled in messaging software, and might instead be handled by
business applications or manual procedures. Countermeasures fall into the
following broad categories:

• Authentication - In general terms, these are mechanisms designed to
verify that a party is who they purport to be before granting them access to
a resource. For transmitting documents across the public Internet, it
generally refers to verifying the identities of the sender and receiver of the
data.

 41

• Authorization - In general terms, these are mechanisms that grant or deny
access to a resource after the identity of the user has been authenticated.
For document transmission, it generally deals with the ability to view or
modify confidential data that has been encrypted.

• Error detection - This is a broad area that can include activities such as
monitoring system access and error logs. These may or may not be part
of the messaging software. It can also cover reviewing and validating data
in business applications to detect aberrations or alterations. Error
detection can be thought of as a way to detect actual or attempted security
breaches rather than to prevent them.

4.4.1.4 Encryption
One of the customary security countermeasures that addresses authentication
and authorization is encryption. There are two broad categories of encryption.
Each of which has various non-technology-related requirements for use.

• Symmetric (private shared) keys - Data is encrypted by the sender and
decrypted by the receiver using the same key. This is the simplest
method, but the management and confidentiality of the key(s) becomes
complex as more parties are involved. Symmetric keys are generally used
only for confidentiality.

• Asymmetric (two part public/private) keys - Asymmetric keys can be used
for both encryption and authentication. For encryption, the sender
encrypts the data using the receiver's public key, and the receiver
decrypts it using the receiver's private key (known only to the receiver).
For authentication, the sender uses the sender's private key, which is
known only to the sender. This is commonly done by encrypting a so-
called "message digest". The message digest can also serve as a means
to detect whether or not the message was altered. The receiver then
decrypts the digest using the sender's public key.

When asymmetric keys are used, private keys are always kept confidential to the
owner but the public keys are shared. Various "trust hierarchies" or "trust
models" may be devised to handle the public keys. Where parties are known to
each other, the public keys may be exchanged on a bilateral basis by whatever
means make sense. This may be appropriate for communities of limited size.
However, when parties don't always know each other or when communities
become large, it may be necessary to have a "trusted third party" that can "vouch
for" the identity (and the public key) of each of the parties. Community members
may retrieve the public keys of other parties from such a third party, as well as
validate a key that they have been given directly.

We believe that the XML Forum's security requirements will determine that
asymmetric keys will be most appropriate. This leads to the question of the best
trust model. We anticipate that in the short term, informal bilateral exchange of

 42

public keys will be sufficient. However, we also anticipate that in the near to long
term a trusted third party model will be required.

In addition, batch and real-time implementations may require somewhat different
solutions. In the current environment, the EDI Server in Austin supports a
relatively small community of participants who are known to each other. "Out of
band" key exchange and management works well in this environment. This
same model seems to hold true for CommonLine. The same model may hold
true for real-time situations in which there is an application-to-application
exchange of data. However, in real-time situations involving individuals at a
browser, a third party trust model may be required. In addition, there may be
situations in which an individual using a browser may act on behalf of an
institution, for example, presenting the institution's security certificate instead of
one assigned to that specific individual. These types of requirements need
further research.

For more general information and discussion, refer to ebXML Transport Routing
and Packaging Overview and Requirements.

4.4.2 Near Term Recommendations

• Key type - Symmetric (private) or Asymmetric (public/private) - It is fairly

clear that asymmetric keys are the best choice for supporting various
authentication and non-repudiation requirements. Asymmetric keys used
in conjunction with one-time session (or file) keys are recommended for
encryption to ensure confidentiality.

• Key management - Public keys are generally exchanged with the Server
via e-mail or some other "out-of-band" techniques, and these appear to be
adequate for the near term. The EDI Server in Austin currently uses a
PGP keyring to manage a small community of institutional users engaging
in batch data exchanges. CommonLine is planning on near-real time
exchanges using PGP. For a near term recommendation, we recommend
the current practice of out-of-band key exchange. We also note that the
Federal government has a GSA sponsored government wide initiative for
a public key infrastructure - see http://hydra.gsa.gov/aces. The Forum
should monitor the development of this infrastructure in developing a long
term recommendation.

• Digital signature approach - The predominant current practice is to use
PGP. As XML DSIG implementations become commonly available, now
that it is a W3C recommendation, we recommend that the community
consider it.

• Encryption algorithm/software - For a near term recommendation, we
recommend current practice of using PGP. We also note that some
government implementations, such as the Department of Education's
Student Aid Internet Gateway, are using FTP over SSL 3.0 and the Diffie-
Hellman Dynamic Key Exchange algorithm.

 43

4.4.3 Long Term Recommendations
We recommend the development of a security policy framework. A policy
framework gives a basis for trust in the community, and gives participants a basis
for the extent to which they can trust a message. Such a framework might
include a set of practices that organizations have to agree to in order to
participate, defines how the trust framework works, provides a set of information
that organizations have to supply in order to comply with the trust framework,
describes how the trust framework works technically, describes the functionality
provided, and specifies the roles and responsibilities of the entity managing the
membership. This framework must take into account the fact that different
government organizations (such as the INS or Department of Education) might
have different explicit or implicit frameworks with which they expect campuses to
comply.

In regard to the technical implementation of the framework, we recommend that
the XML Forum adopt in the long term a set of technologies that are compatible
with the recommended countermeasure technologies described in section 12.3 of
the May, 2001 ebXML Message Service Specification. In particular, we direct
attention to the table of section 12.3.10 that specifies recommended technologies
for various usage profiles. These recommendations, in general, recommend use
of XML/DSIG, SAML, and XML-Encryption as these technologies mature.

4.5 Registries and Repositories

4.5.1 Requirements
Registries and repositories are an ongoing area of development in e-Business
technology. Repositories are facilities for storing data. They can be thought of
as the bookshelves in a library. Registries have information about the data in the
repository, and assist in retrieving items from repositories

Registries and repositories generally deal with making information or software
components (such as XML schemas or parts of schemas) available from a
central location, and offer various ways to categorize and search. The types of
information, items stored, and uses can vary widely. Some are little more than
libraries of XML schemas or DTDs for common business documents. Others are
designed to also store information on business processes or encoded models of
them. Still others function much like telephone yellow pages, helping to identify
companies, which offer certain goods and services.

The architecture of registries and repositories are generally determined by how
they deal with certain requirements. Here are the requirements that are
generally most important, and how we anticipate the XML Forum will view these
requirements in the near term.

• Types of objects to be stored (items) - XML schemas are the primary item
that we believe will need to be stored. These will cover both document

 44

schemas and "library" schemas. There may be a need to also store
supporting materials such as spreadsheets.

• Actors (who uses them) - Most XML Forum members access the materials
as users. A small number of persons on the Forum staff or a small
number of technical volunteers may maintain the information and
materials.

• Activities supported - The schemas MUST be available to users for run-
time validation of instance documents and for developers to assist in
designing applications (or transformations/conversions) that use the
schemas.

• Access controls - Public read access is required. Create/update/delete
access is required and restricted to a small technical staff.

• Audit trails - Audit trails generally track creation, update, or deletion of
registry items, and may also track access. We don't anticipate a
requirement for system based audit trails at this time on the basis that
there will only be a limited number of persons with write access.

For more information and discussion, refer to ebXML Registry and Repository
Part 1: Business Domain.

4.5.2 Near Term Recommendations
The Technical Work Group recommends that the Forum use the PESCXML.org
web server, with a set of file system directories controlled by an administrator, as
a registry and repository. Run-time schemas should be stored in these
directories, and supporting documentation posted on the web site.

4.5.3 Long Term Recommendations
The Forum should monitor developments regarding the maturity and acceptance
of registries, particularly ebXML registries. When and if these become mature,
accepted, and implemented by a number of standards bodies, the Forum may
wish to consider using a facility that is hosted by another body such as DISA,
OASIS, or UN/CEFACT.

4.6 Electronic Trading Partner Agreements

4.6.1 Requirements
This topic is covered primarily due to the ongoing ebXML work with Collaboration
Protocol Agreement and Profile (CPA/CPP) and the Universal Description,
Discovery, and Integration (UDDI) initiative. The ebXML CPA/CPP offers a
mechanism for describing the IT aspects of an e-Business relationship in an XML
document so that it can be used to automatically configure an e-Business
system. UDDI offers similar features, but also offers mechanisms for discovering
trading partners.

Regarding the requirements addressed by the ebXML CPA/CPP, we anticipate
that the information required to configure systems so that different organizations

 45

may exchange data by manual means, and that the systems will be manually
configured. We base this on the assumption that the amount of information
needed can be kept to a level that makes manual means practical.

Regarding the requirements addressed by the UDDI initiative, we don't see a
near term need for automated discovery of trading partners. We believe that
organizations will know of or discover each other primarily through means
involving human action.

4.6.2 Near Term Recommendations
The Technical Work Group recommends against supporting electronic trading
partner agreements in the near term, as there is no firm requirement for them.

4.6.3 Long Term Recommendations
As with the other implementation areas, the Forum will monitor the maturity and
implementation of ebXML CPA/CPP and UDDI. When and if these mature and
software becomes commonly available, then the Forum may wish to consider a
different recommendation.

5 Reference Documents & Standards
http://www.xfront.com/ XML Schema Best Practices as

maintained by Roger L. Costello

http://www.w3.org/XML The current specification for XML

Schemas

http://www.ibiblio.org/xml/ XML resources at Ibiblio (Café Con

Leche)

http://xml.coverpages.org/sgmlnew.html Archives of Robin Cover's XML Cover

Pages at OASIS (the Organization for
the Advancement of Structured
Information Standards

http://www.ietf.org/rfc/rfc2119.txt?number=2119 Key words for use in RFCs to

indicate requirement levels - Internet
Engineering Task Force Request for
Comments 2119

http://ebxml.org The source for ebXML specifications

and technical reports.

http://www.x12.org The ANSI ASC X12 Reference Model

for XML Design (available for download
after registration)

 46

http://www.nemmco.com.au/asexml/aseXML%20v2-1.pdf

 The Australian Standard for Energy

Transactions in XML (aseXML).

http://www-106.ibm.com/developerworks/xml/library/x-retail.html

Association of Retail Technology
Standards (ARTS)

5.1 Terms
Cardinality A quantity relationship between data elements. For example,

one-to-one, zero-to-many and many-to-one express cardinality.
These are referenced as 1..1, 0..u, u..1.

CommonLine A standard for transmission of FFELP and Alternative Loan

student loan data between schools and their varied service
providers.

Namespace A unique name that identifies an organization that has

developed an XML schema. It serves as a prefix so that multiple
schemas can be used to define tags in an XML document. XML
namespaces provide a simple method for qualifying element
and attribute names used in Extensible Markup Language
documents by associating them with namespaces identified by
URI references.

XML Type A definition of an element or group of elements that can be re-

used in the definition of other elements.

XML Schema The definition of the content and structure used in an XML

document, written in XML syntax. Schemas are more verbose
than DTDs, but they can be created with many XML tools.

5.2 Acronyms
CPA Collaboration-Protocol Agreement (CPA). The message

exchange agreement between two parties may be described by
a Collaboration-Protocol Agreement (CPA).

CPP Collaboration-Protocol Profile (CPP). The message exchange

capabilities between two parties may be described by a
Collaboration-Protocol Profile (CPP).

DSIG Digital Signature Group (DSIG). DSIG proposed a standard

format for making digitally-signed, machine-readable assertions
about a particular information resource.

 47

DTD Document Type Definition (DTD). A language that describes

the contents of an SGML or XML document, consisting of a set
of mark-up tags and their interpretation.

ebXML Electronic Business XML (www.ebxml.org) (ebXML) is a set of

specifications that together enable a modular electronic
business framework. ebXML enables a global electronic
marketplace where enterprises of any size and in any
geographical location can meet and conduct business with each
other through the exchange of XML-based messages. ebXML is
jointly sponsored by the United Nations (UN/CEFACT) and
OASIS.

EDI Electronic Data Exchange (EDI). The exchange of standardized

document forms between computer systems for business use.

ETS Educational Testing Service (ETS). A private educational

testing and measurement organization.

FERPA Family Educational Rights and Privacy Act (1974) (FERPA)

allows students access to their educational records and limits
the ability of others to access those records, except as
authorized by law.

IEEE The global association of engineers, scientists and allied

professionals (www.ieee.org)

IFX Interactive Financial Exchange (IFX) (www.ifxforum.org)

IMS The IMS Global Learning Consortium (www.imsproject.org) is

an organization developing and promoting open specifications
for facilitating online distributed learning activities such as
locating and using educational content, tracking learner
progress, reporting learner performance, and exchanging
student records between administrative systems.

ISO The International Organization for Standardization (ISO). A

network of national standards institutes from 140 countries
working in partnership with international organizations,
governments, industry, business and consumer representatives
(www.iso.ch/iso/en/ISOOnline.openerpage)

OASIS Organization for the Advancement of Structured Information

Standards. A not-for-profit global consortium driving the

 48

development, convergence, and adoption of e-business
standards (www.oasis-open.org/home/index.php)

PGP Pretty Good Privacy (PGP). PGP is method of encrypting your
data. It can also be used to apply a digital signature to a
message without encrypting it.

SAML Security Assertion Markup Language (SAML). SAML defines

an XML framework for exchanging authentication and
authorization information using industry-standard protocols and
messaging frameworks.

SGML Standard Generalized Markup Language (SGML). SGML is an

international standard (ISO 8879) that prescribes a standard
format for embedding descriptive markup within a document as
well as a way of describing the structure of a document.

SOAP Simple Object Access Protocol (SOAP). SOAP is an XML

based lightweight protocol for the exchange of information in a
decentralized, distributed environment.

UBL Universal Business Language. An OASIS Technical Committee

whose purpose is to develop a standard library of XML business
documents by modifying an existing library of XML schemas to
incorporate the best features of other schema libraries.
(www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ubl)

UDDI Universal Description, Discovery, and Integration (UDDI). UDDI

is a platform independent, open framework for describing
services using the Internet. It uses standards such as
Extensible Markup Language.

URI Universal Resource Identifier (URI). The generic set of all

names and addresses that are short strings that refer to objects
(typically on the Internet).

URL Uniform Resource Locator (URL). A standard way of specifying

the location of an object, typically a web page, on the Internet.

W3C The World Wide Web Consortium (W3C) - the main standards

body for the World-Wide Web.

X12 Also known as "ANSI X12" and "ASC X12,". It is a standard

from the American National Standards Institute (ANSI) for

 49

electronic data interchange (EDI). X12 is the primary North
American standard for defining EDI transactions.

XDR XML Data Reduced. An XML schema language from Microsoft,

XDR was released in 1999 as a working schema as part of
Microsoft's BizTalk initiative.

XML Extensible Markup Language (XML). A subset of Standardized

Generalized Markup Language aimed at document publishing,
XML is an open standard for describing data and defining data
elements in business-to-business documents.

XSD XML Schema Data

XSL XML Style Language. A style sheet format for XML documents.

It is the XML counterpart to the Cascading Style Sheets (CSS)
language in HTML.

	XML Technical Specification for Higher Education, Version 2.5
	May 2003, Postsecondary Electronic Standards Council
	Table Of Contents
	Development of the XML Technical Specification
	1 Introduction
	1.1 Purpose and Scope
	1.2 Intended Audience

	2 XML Forum Work Products
	2.1 General Guidelines
	2.1.1 General Naming Conventions
	2.1.2 Versioning Methodology
	2.1.3 URI, URL, File, and Directory Structure
	2.1.3.1 Core Data Dictionary
	2.1.3.2 Sector Dictionaries
	2.1.3.3 Instance Document Schemas

	2.2 Core Components
	2.2.1 Metadata Essential for XML Syntax
	2.2.1.1 Data Types
	2.2.1.2 Aggregate Items
	2.2.1.2.1 Specification of Aggregates
	2.2.1.2.2 Issues Concerning Aggregates

	2.2.1.3 Spreadsheet Organization and Columns
	2.2.1.3.1 Organization
	2.2.1.3.2 Columns
	2.2.1.4 Analysis Orientation
	2.2.1.5 Code Lists

	2.2.2 Core Component Naming Conventions
	2.2.3 Explicit Versus Generic Names for Elements
	2.2.3.1 Elements with Structural Differences
	2.2.3.2 Understand Child Element Semantics
	2.2.3.3 Tightly Constrained Relationships
	2.2.3.4 Conveying Ancillary Information

	2.3 Best Practices
	2.3.1 General Design Considerations
	2.3.2 Schema vs. DTD
	2.3.3 Use of Elements vs. Attributes
	2.3.4 Element vs. Type
	2.3.5 Hide vs. Expose Namespaces
	2.3.6 Local vs. Global
	2.3.7 Namespaces - Zero, One or Many
	2.3.8 Nulls, Zeroes, Spaces, and Absence of Data
	2.3.9 Other Considerations

	3 XML Schema Development Roadmap
	4 Implementation Recommendations
	4.1 Why This Section?
	4.2 General Requirements
	4.3 Message Handling
	4.3.1 Requirements
	4.3.2 Options and Near Term Recommendations
	4.3.3 Long Term Recommendations

	4.4 Security
	4.4.1 Requirements
	4.4.1.1 General Considerations
	4.4.1.2 Security Considerations
	4.4.1.3 Countermeasures and Remediation Strategies
	4.4.1.4 Encryption

	4.4.2 Near Term Recommendations
	4.4.3 Long Term Recommendations

	4.5 Registries and Repositories
	4.5.1 Requirements
	4.5.2 Near Term Recommendations
	4.5.3 Long Term Recommendations

	4.6 Electronic Trading Partner Agreements
	4.6.1 Requirements
	4.6.2 Near Term Recommendations
	4.6.3 Long Term Recommendations

	5 Reference Documents & Standards
	5.1 Terms
	5.2 Acronyms

	
	PESC Title Page

