Liberty Alliance Project: DRAFT Version: v2.0-06

[]
B

PROJECT

Liberty ID-WSF Data Services Template
Specification

Version: v2.0-06

Editors:
Jukka Kainulainen, Nokia Corporation
Aravindan Ranganathan, Sun Microsystems, Inc

Contributors:

Robert Aarts, Nokia Corporation
Rajeev Angal, Sun Microsystems, Inc.
Conor Cahill, AOL Time Warner, Inc.
Carolina Canales-Valenzuela, Ericsson
Darryl Champagne, IEEE-ISTO

Andy Feng, AOL Time Warner, Inc.
Gael Gourmelen, France Telecom
Lena Kannappan, France Telecom
Sampo Kellomaki, Symlabs, Inc.

John Kemp, Nokia Corporation

Paul Madsen, Entrust

Matti Saarenpaa, Nokia Corporation
Jonathan Sergent, Sun Microsystems, Inc.
Greg Whitehead, Trustgenix

Abstract:

This specification provides protocols, schema and processing rules for the query and modification of data attributes
exposed by a data service (such as a personal profile service or a geolocation service) using the Liberty Identity Web
Services Framework (ID-WSF). Also subscribing to notifications related to those data attributes and sending and and
receiving those notifications are supported. The specification also defines some guidelines and common XML
attributes and data types for data services.

Filename: draft-liberty-idwsf-dst-v2.0-06.pdf

Copyright © 2004 Liberty Alliance Project

Liberty Alliance Project: Confidential

1

a s~ wnN

© 00 N O

10

12
13
14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

Notice

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the
document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact
the Liberty Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this document may require licenses under third party intellectual property
rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are
not, and shall not be held responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rightsThis Specification is provided "AS IS", and no participant in the Liberty Alliance

makes any warranty of any kind, express or implied, including any implied warranties of merchantability,
non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementors

of this Specification are advised to review the Liberty Alliance Project’s weldite: (/www.projectliberty.org/for
information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance
Management Board.

Copyright © 2004 ActivCard; America Online, Inc.; American Express Travel Related Services; Axalto; Bank of
America Corporation; Bell Canada; Cingular Wireless; Cisco Systems, Inc.; Communicator, Inc.; Deloitte & Touche
LLP; Earthlink, Inc.; Electronic Data Systems, Inc.; Entrust, Inc.; Epok, Inc.; Ericsson; Fidelity Investments; France
Telecom; Gemplus; General Motors; Hewlett-Packard Company; i2 Technologies, Inc.; Internet2; Intuit Inc.;
MasterCard International; NEC Corporation; Netegrity, Inc.; NeuStar, Inc.; Nextel Communications; Nippon
Telegraph and Telephone Corporation; Nokia Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OneName Corporation;
Openwave Systems Inc.; Phaos Technology; Ping Identity Corporation; PricewaterhouseCoopers LLP; RegistryPro,
Inc.; RSA Security Inc; Sabre Holdings Corporation; SAP AG; SchlumbergerSema; Sigaba; SK Telecom; Sony
Corporation; Sun Microsystems, Inc.; Symlabs, Inc.; Trustgenix; United Airlines; VeriSign, Inc.; Visa International,
Vodafone Group Plc; Wave Systems. All rights reserved.

Liberty Alliance Project

Licensing Administrator

c/o IEEE-ISTO

445 Hoes Lane

Piscataway, NJ 08855-1331, USA
info@projectliberty.org

Liberty Alliance Project: Confidential

2

http://www.projectliberty.org/

31
32

33
34
35

36
37
38

39
40
41
42
43
44

45
46

47
48

49

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

Revision History
Revision: 01 Date: 06 April 2004

Added the subscriptions and notifications and also sorting and pagination. Modified the structure a bit to avoid
repeating same processing rules again and again for each request message.
Revision: 02 Date: 07 July 2004

Updated based on feedback in Barcelona. Some clarifications in error/status reporting added. A huge number of
typos fixed and many most probably also left unfixed.
Revision: 03 Date: 08 August 2004

Namespaces added to examples. Long parameter tables slit to smaller tables. Handling missing itemlID attributes is
now covered (Bug 668). Added note on the use of the static set. When sorting requested, now OK to return unsorted,
if sorting not supported by a WSP, but that must be indicated in a response. Changed remaining attribute to integer
and defined the use of a special value -1. Added text for special subscription cases, when either starts==expires or
duration equals to zero. Added text to cover bug 669 (empty elements not supported well).

Revision: 04 Date: 23 September 2004

Bugs 688, 689 and 690.
Revision: 05 Date: 27 September 2004

Some minor updates as previous updates were not properly completed. Also some typos fixed.
Revision: 2.0-06 Date: 22 November 2004

Update schema to 2.0 (and references).

Liberty Alliance Project: Confidential

3

50

51
52
53
54
55
56
57
58
59

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

Contents

L OVRIVIBW .ottt e e e e e 5
2. Data MO L . ..o 7
3. Message INterface.o 17
A, QUENYING Data.ot 27
5. MOdifyiNg Datao 43
6. Subscriptions and NOEIfICAtIONS. i e 50
7. The Schema forthe DST ProtoCOoIS oo e 62
8. Checklist for Service SpPecifications. 67
R OB CES . . . 74

Liberty Alliance Project: Confidential

4

60

61
62
63
64

65
66
67
68
69

70
71

72
73
74
75
76
77

78
79
80
81

82

83
84
85
86
87
88
89

90

91
92
93
94
95
96

97
98
99
100

101
102
103

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1. Overview

This specification provides protocols for the query and modification of data attributes related to a Principal, and
exposed by a data service. The protocols are also provided for subscribing to notification related to those attributes
and sending and receiving those notifications. Additionally, some guidelines, common XML attributes and data types
are defined for data services.

This specification does not give a strict definition as which services are data services and which are not, i.e. to which
services this specification is targeted. A data service, as considered by this specification, is a web service that supports
the storage and update of specific data attributes regarding a Principal. A data service might also expose dynamic
data attributes regarding a Principal. Those dynamic attributes may not be stored by an external entity, but the service
knows or can dynamically generate their values.

An example of a data service would be a service that hosts and exposes a Principal’s profile information (such as name,
address and phone number). An example of a data service exposing dynamic attributes is a geolocation service.

The data services using this specification can also support other protocols than those specified here. They are not
restricted to support just querying and modifying data attributes and subscribing notifications and sending those, but
they can also support actions (e.g. making reservations). Also some services might support only querying data without
supporting modifications and in some cases there could be services supporting only modifications without supporting
querying, i.e. other parties are allowed to give new data, but not query existing. The specification provides many
features and data services must choose, which features to use and how.

This specification has three main parts. First some common attributes, guidelines and type definitions to be used by
different data services are defined and the XML schema for those is provided. Secondly, the methods of accessing
the data; providing an XML schema for the Data Services Template (DST) protocols. Finally, a checklist is given for
writing services on top of the DST.

Note:

This specification does not define any XML target namespace. It provides two utility schemas to be included
by the data services. The Data Services Template schemas will appear in the namespace of the data services.
This specification uses in examples the ID-SIS Personal Profile servicf_{segylDPP]), which is built

on top of the DST, and thep: is the default namespace used in examples, but it has no other relationship

to the Data Services Template. Note also that the Data Services Template schemas includes Liberty Utility
schema and some elements and types are defined in that schema. Some type definitions are also imported
from [LibertyMetadata] [LibertyDisco] and[LibertySOAPBIinding]

1.1. Notation

This specification uses schema documents conforming to W3C XML Schemgsesnal)] and normative text to
describe the syntax and semantics of XML-encoded protocol messages. Note: Phrases and numbers in brackets [] refer
to other documents; details of these references can be found at the end of this document. There are some exceptions

to this rule. Brackets [] are also used to indicate logical elements groups in text, jubgivalElement] is used
instead of<RealElementl> , <RealElement2> ,... Please note the different font compared to references to other
documents.

The key words "MUST","MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in
[RFC2119]: "they MUST only be used where it is actually required for interoperability or to limit behavior which has
potential for causing harm (e.g., limiting retransmissions)."

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application
features and behavior that affect the interoperability and security of implementations. When these words are not
capitalized, they are meant in their natural-language sense.

Liberty Alliance Project: Confidential

5

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

104 The following namespaces are used in the schema definitions:

105 *The prefixxs: stands for the W3C XML schema namespabép(//www.w3.0rg/2001/XMLSchema).
106 [Schemal]

107 * The prefixxml: stands for the W3C XML namespadatp://www.w3.org/XML/1998/namespace).

108 *The prefix disco: stands for the Liberty ID-WSF Discovery Service schema namespace
109 (urn:liberty:disco:2003-08). [LibertyDisco]

110 *The prefixmd: stands for the Liberty Metadata schema namespaceliberty:metadata:2003-08).

111 [LibertyMetadata]

112 *The prefix sh-ext: stands for the Liberty ID-WSF SOAP Binding Extension schema namespace
113 (urn:liberty:sh:2004-04). [LibertySOAPBInding]

114 The following namespaces are used in examples:
115 » The prefixpp: stands for the Liberty ID-SIS Personal Profile Service namespatéi{erty:id-sis-pp:2003-08).

116 [LibertyIDPP].

117 * The prefixds: stands for the W3C XML signature hamespalegp(//www.w3.0rg/2000/09/xmldsig#).
118 [XMLDsig]

119 This specification uses the following typographical conventions in tektement>, <ns:ForeignElement>,
120 attribute, Datatype, OtherCode

121 For readability, when an XML Schema type is specified toxqaboolean , this document discusses the values as
122 "true" and'false” rather thanthe"1" and"0" which will existin the document instances.

123 Definitions for Liberty-specific terms can be foundinbertyGlossary]

124 1.2. Liberty Considerations

125 This specification contains enumerations of values that are centrally administered by the Liberty Alliance Project.
126 Although this document may contain an initial enumeration of approved values, implementors of the specification
127 MUST implement the list of values whose location is currently specifidd iertyReg] according to any relevant

128 processing rules in both this specification dhithertyReg]

Liberty Alliance Project: Confidential

6

129

130
131
132
133

134
135
136
137
138

139
140
141
142
143

144
145
146

147

148
149

150

151
152

153
154
155

156
157
158
159

160
161
162
163

164

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

2. Data Model

For each different type of a data service an XML schema must be specified. An example of a service type is Liberty
ID-SIS Personal Profile ServideibertyIDPP]. See[LibertyDisco] for more information about service types. The

XML schema of a service type specifies the data the service can host. The XML schema for a service type defines the
data the service type can host and the structure if this data.

Typically the data structure is hierarchical and has one root node. Individual branches of the structure can be accessed
separately and the whole structure can be accessed by pointing to the root node. A data service may also be defined so
that there is no one data structure to which data is stored and from which data is queried. There can be different request
parameters defined and a number of data sets defined to be accessed using these parameter. The service specification
defines, how the defined parameters are used and which are the data sets.

The data may be stored in implementation-specific ways, but will be exposed by the service using the XML schema
specified both in this document, and that of the defined service type. This also means that the XML document defined
by the schema is a conceptual XML document. Depending upon the implementation, there may be no XML document
that matches the complete conceptual document. The internal storage of the data is separate and distinct from the
document published through this model.

The schemas for different service types may have common characteristics. This section describes the commonalities
specified by the Data Services Template, provides schema for common attributes and data types, and also gives some
normative guidelines.

2.1. Guidelines for Schemas

The schemas of different data services SHOULD follow guidelines defined here. The purpose of these guidelines is to
make the use of the Data Services Template easier when defining and implementing services.

« Each data attribute regarding the Principal SHOULD be defined as an XML element of a suitable type.

* XML attributes SHOULD be used only to qualify the data attribute defined as XML elements and not contain the
actual data values related to the Principal.

* An XML element SHOULD either contain other XML elements or actual data value. An XML element SHOULD
NOT havemixed content, i.e. both a value and sub-elements. Also complex tlpes@ndchoice SHOULD
NOT be used.

» Once a data attribute has been published in a specification for a service type, its syntax and semantics MUST not
change. If evolution in syntax or semantics is needed, any new version of a data attribute MUST be assigned a
different name, effectively creating a new attribute with new semantics so that it does not conflict with the original
attribute definition.

« All elements MUST be defined as global elements, when they can be requested individually. When elements with
complex type are defined, references to global elements are used. The reason for this guideline is that the XML
Schema for a service does not only define the syntax of the data supported by the service but also the transfer
syntax. In many cases it should be possible to query and modify individual elements.

* The type definitions provided by the XML Schema SHOULD be used, when they cover the requirements.

Liberty Alliance Project: Confidential

7

165

166
167

168
169
170

171
172

173
174
175
176

177
178
179
180
181
182
183

184

185
186
187

188
189
190

191
192

193

194
195
196
197
198

199
200
201
202
203
204

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

2.2. Extending a Service

A service defined by its specification and schema MAY be extended in different ways. What type of extensions are
supported in practice MUST be specified individually for each service type in a specification for that service type.

« An implementation MAY add new elements and attributes to the specified schema. These new elements and
attributes MUST use their own XML namespace until they are adopted by the official Liberty specification and
schema of the service type.

*«When new features for a service are specified (e.g. new elements), new keywords SHOULD be specified for
indicating the new features using th®ption> element (sefLibertyDisco]for more information).

*New values for enumerators MAY be specified subsequent to the release of a specification document for a
specific service type. The specification for a service type MUST specify the authority for registering new official
enumerators (whether that authority is the specification itself, or some external authority). For specification done
by Liberty Alliance, sedLibertyReg]

« Elements defined in the XML schema for a service type MAY contaircanany> element to support ar-
bitrary schema extension. When tkgs:any> elements are in the schema, an implementation MAY sup-
port this type of extension, but is not required to. The&:any> elements SHOULD always be put inside
<Extension> elements. If an implementation does support this type of schema extension, then it MAY regis-
ter urn:liberty:dst:can:extend discovery option keyword. When a service holds new data, which is not
defined in the schema for the service type but is stored using this kind of support for extensions, it MAY register
urn:liberty:dst:extend discovery option keyword.

2.3. Time Values and Synchronization

Some of the common XML attributes are time values. All Liberty time values have thel&ygsEme , which is built
in to the W3C XML Schema Datatypes specification. Liberty time values MUST be expressed in UTC form, indicated
by a "Z" immediately following the time portion of the value.

Liberty requesters and responders SHOULD NOT rely on other applications supporting time resolution finer than sec-
onds, as implementations MAY ignore fractional second components specified in timestamp values. Implementations
MUST NOT generate time instants that specify leap seconds.

The timestamps used in the DST schemas are only for the purpose of data synchronization and no assumptions should
be made as to clock synchronization.

2.4. Common Attributes

The XML elements defined in the XML schemas for the services either contain data values or other XML elements.
So an XML element is either a leaf element or a container. The containers do not have any other data content than
other XML elements and possible qualifying XML attributes. The other type of XML elements are condielared
elements, and as such, do not contain other XML elements. These leaf elements can be further divided into two
different categories: normal and localized. The localized leaf elements contain text using a local writing system.

Both leaf and container XML elements can have service-specific XML attributes, but there are also common XML
attributes supplied for use by all data services. These common XML attributes are technical attributes, which are
usually created by the Web Service Provider (WSP) hosting a data service (for more detclectiee 5. These
technical attributes are not mandatory for all data services, but if they are implemented, they MUST be implemented in
the way described in this document. Each service should specify separately if one or more of these common attributes
are mandatory or optional for that service. In addition to the common attributes, we define attribute groups containing

Liberty Alliance Project: Confidential

8

205
206

207

208

209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225

226

227

228
229
230

231
232
233
234
235
236

237
238
239
240

241
242
243

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

these common attribute groups. There are three attribute groups, one cocomormAttributes) mainly targeted
for container elements and two for the leaf elemeletsfAttributes andlocalizedLeafAttributes).

2.4.1. The commonAttributes Attribute Group

There are only two common attributes:

id [Optional]
Theid is a unique identifier within a document. It can be used to refer uniquely to an element, especially
when there may be several XML elements with the same name. If the schema for a data service does not
provide any other means to distinguish between two XML elements and this functionality is needed, the
attribute MUST be used. Thid attribute is only meant for distinguishing XML elements within the same
conceptual XML document. It MUST NOT be used for globally unique identifiers, because that would create
privacy problems. An implementation MAY set specific length restrictiongloattributes to enforce this.
The value of théd attribute SHOULD stay the same when the content of the element is modified so the same
value of theid attribute can be used when querying the same elements at different time&l aktebute
MUST NOT be used for storing any data and it SHOULD be kept short.

modificationTime [Optional]
ThemodificationTime specifies the last time that the element was modified. Modification includes chang-
ing either the value of the element itself, or any sub-element. So the time of the modification MUST be prop-
agated up all the way to the root element, when container elements havedtfieationTime attribute.
If the root element has theodificationTime attribute, it states the time of the latest modification. Note
that a data service may have tiedificationTime attribute used only in leaf elements or not even for
those as it is optional.

2.4.2. The leafAttributes Attribute Group

This group includes theommonAttributes attribute group and defines three more attributes for leaf elements:

modifier [Optional]
Themodifier is theProviderlD (see[LibertyMetadata)] of the service provider which last modified the
data element.

ACC[Optional]
The acronymACCstands forattribute collection contextvhich describes the context (or mechanism) used
in collecting the data. This might give useful information to a requester, such as whether any validation has
been done. ThaCcCalways refers to the current data values, so whenever the value of an element is changed,
the value of theaCCmust be updated to reflect the new situation. Al€is of typeanyURI .
The following are defined values for teCattribute:

e urn:liberty:dst:acc:unknown
This means that there has been no validation, or the values are just voluntary input from the ugerCViey
be omitted in the message exchange when it has this value, as this value is equivalent to supplgiogttribute
at all.

e urn:liberty:dst:acc:incentive

There has been some incentive for user to supply correct input (such as a gift sent to the user in return for their
input).

Liberty Alliance Project: Confidential

9

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

244 e urn:liberty:dst:acc:challenge

245 A challenge mechanism has been used to validate the collected data (e.g. an email sent to address and a reply
246 received or an SMS message sent to a mobile phone number containing a WAP URL to be clicked to complete the
247 data collection)

248 e urn:liberty:dst:acc:secondarydocuments
249 The value has been validated from secondary documents (such as the address from an electric bill).

250 e urn:liberty:dst:acc: primarydocuments

251 The value has been validated from primary documents (for example, the name and identification number from a
252 passport).

253 Other values are allowed f@CG but this specification normatively defines usage only for the values listed
254 above.

255 When theACCis included in the response message, the response SHOULD be signed by the service provider
256 hosting the data service.

257 ACCTime [Optional]

258 This defines the time that the value for the€Cattribute was given. Note that this can be different from the

259 madificationTime . TheACCcontains information that may be related to the validation of the entry. Such
260 validation might happen later than the time the entry was made, or modified. The entry can be validated more
261 than once.

262 2.4.3. The localizedLeafAttributes Attribute Group
263 This attribute group includes theafAttributes attribute group and defines two more attributes to support localized

264 data, when the Latin 1 character set is not used:

265 xml:ilang [Required]
266 This defines the language used for the value of a localized leaf element. When the
267 localizedLeafAttributes attribute group is used for an element, this is a mandatory XML attribute.

268 script [Optional]

269 Sometimes the language does not define the writing system used. In such cases, this attribute defines
270 the writing system in more detail. This specification defines the following values for this attribute:
271 urn:liberty:dst:script:kana andurn:liberty:dst:script: kanji . See LibertyRed where to

272 find more values and how to specify more values.

273 2.4.4. Individual common attributes

274 In addition to the previous attribute groups a couple of more common attributes are defined and available for services.
275 The attributes in attribute groups can also be used individually without taking the whole attribute group into use, but
276 the following attributes are assumed to be more seldomly used and so they are not included in any of the attribute
277 groups to keep those attribute groups more common.

278 refreshOnOrAfter

279 A WSC SHOULD cache the element and its content until the time specified bneftleehOnOrAfter
280 attribute, if it wants to use it later and is also allowed to do so. There is no absolute guarantee that the data
281 has not changed before that time, but this is the guidance given by the WSP providing the information.

Liberty Alliance Project: Confidential

10

282
283
284
285

286

287
288
289
290
201

292

293

294

295

296

297

298

299
300

302
303

305
306
307

309
310

312
313
314

316
317
318
319
320
321

323
324
325
326
327
328

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

destroyOnOrAfter
Even if a WSC has not been able to refresh the information, it SHOULD destroy it, if the element containing
the information has the attributestroyOnOrAfter and the time specified by that attribute has come. The
information most probably is so out of date that it is unusable.

2.5. Common Data Types

The type definitions provided by XML schema can not always be used directly by Liberty ID-WSF data services, as
they lack the common attributes noted above. The DST data type sclemti#of 2.% provides types derived from

the XML Schema [XML]) datatype definitions with those common attributes added to the type definitions. Please
note that for strings there are two type definitions, one for localized elements and another for elements normalized
using the Latin 1 character set.

The following type definitions are provided:

* DSTLocalizedString
* DSTString

* DSTInteger
*DSTURI

* DSTDate

* DSTMonthDay

2.6. The Schema for Common XML Attributes and Data Types

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:disco="urn:liberty:disco:2004-12"
elementFormDefault="qualified"
attributeFormDefault="unqualifi ed"
xmlins:sb20="urn:liberty:sb:2004-12">

<xs:include schemalocation="liberty-idwsf-utility-v2.0.xsd"/>

<xs:import namespace="urn:liberty:disco:2004-12" schemalocation="liberty-idwsf-disco
-svc-v2.0.xsd"/>

<xs:import namespace="urn:liberty:sh:2004-12" schemalocation="liberty-idwsf-soap-binding-v2.0.x
sd"/>

<xs:annotation>
<xs:documentation>
The source code in this XSD file was excerpted verbatim from:
Liberty ID-WSF Data Services Template Specification
Version 2.0-06 Draft
22 November 2004

Copyright (c) 2004 Liberty Alliance participants, see
http://www.projectliberty.org/spec s/idwsf_copyrights.html

NOTE: This schema must be used within the context of another schema -
It is not intended to validate by itself.

Liberty Alliance Project: Confidential

11

329

331
332
333

335
336

338
339
340

342
343

345
346
347

349
350

352
353
354

356
357

359
360
361

363
364

366
367
368

370
371
372
373
374
375
376
377
378

380
381
382

384
385

387
388
389

391
392

394
395

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

The scheme which includes this must provide definitions for:
TypeType

SelectType

TriggerType

SortType

<Ixs:documentation>
</xs:annotation>
<xs:element name="ResourcelD" type="disco:ResourcelDType"/>
<xs:element name="EncryptedResourcelD" type="disco:EncryptedResourcelDType"/>
<xs:group name="ResourcelDGroup">
<xs:choice>
<xs:element ref="ResourcelD"/>
<xs:element ref="EncryptedResourcelD"/>
</xs:choice>
</xs:group>
<xs:element nhame="ChangeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
</xs:restriction>
<Ixs:simpleType>
</xs:element>
<xs:attribute name="changeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
<xs:enumeration value="All"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<l-- Querying Data -->
<xs:element name="Query" type="QueryType"/>
<xs:complexType name="QueryType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element name="Queryltem" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:annotation>
<xs:documentation>
NOTE: The below two types (SelectType and SortType) must
be defined by the schema that includes this one.
</xs:documentation>
</xs:annotation>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element name="Sort" type="SortType" minOccurs="0"/>
<xs:element ref="ChangeFormat" minOccurs="0" maxOccurs="2"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="includeCommonAttributes" type="xs:boolean" default="0"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="changedSince" type="xs:dateTime"/>
<xs:attribute name="count" type="xs:nonNegativelnteger"/>
<xs:attribute name="offset" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" type="IDType"/>
<xs:attribute name="setReq">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Static"/>
<xs:enumeration value="DeleteSet"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

Liberty Alliance Project: Confidential

12

DRAFT Version: v2.0-06

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

396 </xs:element>

397 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
398 </xs:sequence>

399 <xs:attribute name="id" type="xs:1D"/>

400 <xs:attribute name="itemID" type="IDType"/>

401 </xs:complexType>

402

403 <xs:element name="QueryResponse" type="QueryResponseType"/>

404 <xs:complexType name="QueryResponseType">

405 <xs:sequence>

406 <xs:element ref="Status"/>

407 <xs:element name="Data" minOccurs="0" maxOccurs="unbounded">
408 <xs:complexType>

409 <xs:sequence>

410 <xs:any minOccurs="0" maxOccurs="unbounded"/>

411 </xs:sequence>

412 <xs:attribute name="id" type="xs:ID"/>

413 <xs:attribute name="itemIDRef" type="IDReferenceType"/>
414 <xs:attribute name="notSorted">

415 <xs:simpleType>

416 <xs:restriction base="xs:string">

417 <xs:enumeration value="Now"/>

418 <xs:enumeration value="Never"/>

419 </xs:restriction>

420 </xs:simpleType>

421 </xs:attribute>

422 <xs:attribute ref="changeFormat"/>

423 <xs:attribute name="remaining" type="xs:integer"/>

424 <xs:attribute name="nextOffset" type="xs:nonNegativelnteger" default="0"/>
425 <xs:attribute name="setID" type="IDType"/>

426 </xs:complexType>

427 </xs:element>

428 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
429 </xs:sequence>

430 <xs:attribute name="id" type="xs:1D"/>

431 <xs:attribute name="itemIDRef" type="IDReferenceType"/>

432 <xs:attribute name="timeStamp" type="xs:dateTime"/>

433 </xs:complexType>

434 <l-- Modifying Data -->

435 <xs:element name="Modify" type="ModifyType"/>

436 <xs:complexType name="ModifyType">

437 <xs:sequence>

438 <xs:group ref="ResourcelDGroup"” minOccurs="0"/>

439 <xs:element name="Modification" maxOccurs="unbounded">

440 <xs:complexType>

441 <xs:sequence>

442 <xs:annotation>

443 <xs:documentation>

444 NOTE: The below type must be defined by

445 the schema that includes this one.

446 </xs:documentation>

447 </xs:annotation>

448 <xs:element name="Select" type="SelectType" minOccurs="0"/>
449 <xs:element name="NewData" minOccurs="0">

450 <xs:complexType>

451 <xs:sequence>

452 <xs:any minOccurs="0" maxOccurs="unbounded"/>
453 </xs:sequence>

454 </xs:complexType>

455 </xs:element>

456 </xs:sequence>

457 <xs:attribute name="id" type="xs:ID"/>

458 <xs:attribute name="itemID" type="IDType"/>

459 <xs:attribute name="notChangedSince" type="xs:dateTime"/>
460 <xs:attribute name="overrideAllowed" type="xs:boolean" default="0"/>
461 </xs:complexType>

462 </xs:element>

Liberty Alliance Project: Confidential

13

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

463 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
464 </xs:sequence>

465 <xs:attribute name="id" type="xs:I1D"/>

466 <xs:attribute name="itemID" type="IDType"/>

467 </xs:complexType>

468 <xs:element name="ModifyResponse" type="ResponseType"/>

469 <xs:complexType name="ResponseType">

470 <xs:sequence>

471 <xs:element ref="Status"/>

472 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
473 </xs:sequence>

474 <xs:attribute name="id" type="xs:I1D"/>

475 <xs:attribute name="itemIDRef" type="IDReferenceType"/>

476 <xs:attribute name="timeStamp" type="xs:dateTime"/>

477 </xs:complexType>

478 <l-- Subscribing notifications and modifying, renewing and deleting existing notifications -->
479 <xs:element name="Subscribe" type="SubscribeType"/>

480 <xs:complexType name="SubscribeType">

481 <xs:sequence>

482 <xs:group ref="ResourcelDGroup"” minOccurs="0"/>

483 <xs:element ref="Subscription" maxOccurs="unbounded"/>

484 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
485 </xs:sequence>

486 <xs:attribute name="id" type="xs:I1D"/>

487 <xs:attribute name="itemID" type="IDType"/>

488 <xs:attribute name="returnCurrentValues" type="xs:boolean" default="1"/>
489 </xs:complexType>

490 <xs:element name="SubscribeResponse" type="SubscribeResponseType"/>
491 <xs:complexType name="SubscribeResponseType">

492 <xs:sequence>

493 <xs:element ref="Status"/>

494 <xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
495 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
496 </xs:sequence>

497 <xs:attribute name="id" type="xs:ID"/>

498 <xs:attribute name="itemIDRef" type="IDReferenceType"/>

499 <xs:attribute name="timeStamp" type="xs:dateTime"/>

500 </xs:complexType>

501 <l-- Query subscriptions -->

502 <xs:element name="QuerySubscriptions" type="QuerySubscriptionsType"/>
503 <xs:complexType name="QuerySubscriptionsType">

504 <xs:sequence>

505 <xs:group ref="ResourcelDGroup" minOccurs="0"/>

506 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
507 </xs:sequence>

508 <xs:attribute name="id" type="xs:ID"/>

509 <xs:attribute name="itemID" type="IDType"/>

510 </xs:complexType>

511 <xs:element name="Subscriptions" type="SubscriptionsType"/>

512 <xs:complexType name="SubscriptionsType">

513 <xs:sequence>

514 <xs:element ref="Status"/>

515 <xs:element ref="Subscription" minOccurs="0" maxOccurs="unbounded"/>
516 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
517 </xs:sequence>

518 <xs:attribute name="id" type="xs:1D"/>

519 <xs:attribute name="itemIDRef" type="IDReferenceType"/>

520 </xs:complexType>

521 <l-- Subscription Element -->

522 <xs:element name="Subscription">

523 <xs:complexType>

524 <xs:sequence>

525 <xs:annotation>

526 <xs:documentation>

527 NOTE: The below types (SelectType, TypeType, and TriggerType)
528 must be defined by the schema that includes this one.
529 </xs:documentation>

Liberty Alliance Project: Confidential

14

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

530 </xs:annotation>

531 <xs:element name="Select" type="SelectType" minOccurs="0"/>
532 <xs:element ref="ChangeFormat" minOccurs="0" maxOccurs="2"/>
533 <xs:element name="NotifyTo" type="sb20:ServicelnstanceUpdateType"/>
534 <xs:element name="NotifyEndedTo" type="sb20:ServicelnstanceUpdateType" minOccurs="0"/>
535 <xs:element name="Type" type="TypeType" minOccurs="0"/>

536 <xs:element name="Trigger" type="TriggerType" minOccurs="0"/>
537 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
538 </xs:sequence>

539 <xs:attribute name="starts" type="xs:dateTime"/>

540 <xs:attribute name="expires" type="xs:dateTime"/>

541 <xs:attribute name="duration" type="xs:duration"/>

542 <xs:attribute name="id" type="xs:ID"/>

543 <xs:attribute name="invokelD" type="IDType"/>

544 <xs:attribute name="subscriptionID" type="IDType"/>

545 <xs:attribute name="includeData" default="Yes">

546 <xs:simpleType>

547 <xs:restriction base="xs:string">

548 <xs:enumeration value="Yes"/>

549 <xs:enumeration value="No"/>

550 <xs:enumeration value="YesWithCommonAttributes"/>

551 </xs:restriction>

552 </xs:simpleType>

553 </xs:attribute>

554 </xs:complexType>

555 </xs:element>

556 <l-- Sending Notifications and Notifying about subscriptions which have ended-->
557 <xs:element name="Notify" type="NotifyEndedType"/>

558 <xs:element name="NotifyResponse" type="NotifyEndedResponseType"/>

559 <xs:element name="Ended" type="NotifyEndedType"/>

560 <xs:element name="EndedResponse" type="NotifyEndedResponseType"/>
561 <xs:complexType name="NotifyEndedType">

562 <xs:sequence>

563 <xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
564 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
565 </xs:sequence>

566 <xs:attribute name="id" type="xs:I1D"/>

567 <xs:attribute name="itemID" type="IDType"/>

568 <xs:attribute name="timeStamp" type="xs:dateTime"/>

569 </xs:complexType>

570 <xs:complexType name="NotifyEndedResponseType">

571 <xs:sequence>

572 <xs:element ref="Status"/>

573 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
574 </xs:sequence>

575 <xs:attribute name="id" type="xs:ID"/>

576 <xs:attribute name="itemIDRef" type="IDReferenceType"/>

577 </xs:complexType>

578 <I-- Notification Element -->

579 <xs:element name="Notification">

580 <xs:complexType>

581 <xs:sequence>

582 <xs:element name="Data" minOccurs="0">

583 <xs:complexType>

584 <xs:sequence>

585 <xs:any minOccurs="0" maxOccurs="unbounded"/>

586 </xs:sequence>

587 </xs:complexType>

588 </xs:element>

589 </xs:sequence>

590 <xs:attribute name="id" type="xs:ID"/>

591 <xs:attribute name="invokelD" type="IDType"/>

592 <xs:attribute name="subscriptionID" type="IDType" use="required"/>
593 <xs:attribute ref="changeFormat"/>

594 <xs:attribute name="expires" type="xs:dateTime"/>

595 <xs:attribute name="duration" type="xs:duration"/>

596 <xs:attribute name="endReason" type="xs:anyURI"/>

Liberty Alliance Project: Confidential

15

597
598
599
600
601

Liberty Alliance Project:

Liberty ID-WSF Data Services Template Specification

</xs:complexType>
</xs:element>
</xs:schema>

Liberty Alliance Project: Confidential

16

DRAFT Version: v2.0-06

602

603
604
605
606
607

608

609

610

611
612
613
614
615

616
617
618
619
620
621

622

623
624

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

3. Message Interface

This specification defines number of protocols for data services. These protocols rely mainly on a request/response
message-exchange pattern. The only exception is the notification messages, which might not get any response. The
messages specified in this document are carried in the SOAP body. No additional content is specified for the SOAP
header in this document, but implementers of these protocols MUST follow the rules defih#ukity SOAPBInd-

ing].
The following two tables list the protocol elements specified by this specification.

Table 1. Request/Response

Request by a WSC Response by a WSP
<Query> <QueryResponse>
<Modify> <ModifyResponse>
<Subscribe> <SubscribeResponse>
<QuerySubscriptions> <Subscriptions>

Table 2. Notification/Acknowledgement

Notification by a WSP IAcknowledgement by a WSC
<Notify> <NotifyResponse>
<Ended> <EndedResponse>

The messages for different protocols have common features, attributes and elements. These common issues are dis-
cussed in this chapter and the actual messages are specified in the following chapters. Together with common parts the
related processing rules are also defined. In the text especially in the processing riRegibstElement] is used

to replace the actual request element in many cases. These parts MUST be read as ingfeagliedt&lement]

there would be any of the following elementQuery> , <Modify> , <Subscribe> or <QuerySubscriptions>

The [ResponseElement] is used instead of the actual response element in many places. Those parts MUST be
read as instead of fResponseElement] there would be any of the following elementsQueryResponse> |,
<ModifyResponse> , <SubscribeResponse> or <Subscriptions> . Also the[NotificationElement] and

the <AcknowledgementElement> are used. When these are used, the text MUST be read as instead of a
[NotificationElement] there would be either of the elementsiotify> or <Ended> and instead of an
[AcknowledgementElement] there would be either of the elemenrtsotifyResponse> or <EndedResponse> .

3.1. Status and Fault Reporting

Two mechanism are defined to report back to the requestor whether the processing of a request was successful or not
or something betweeriLibertySOAPBInding]defines the ID-* Fault message, which is used to convey processing

Liberty Alliance Project: Confidential

17

625
626
627

628
629

630
631
632
633

634
635

636
637

638
639
640

641
642
643
644
645
646
647
648

649

650
651
652
653
654

655

656

657

658

659

660

661

662

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

exception. An ordinary ID-* Message carrying normal response is used to report back application statuses including
normal error conditions, when an application has detected an error condition as part of the normal processing e.qg.
processing according to the processing rules specified in this document.

From the Data Service Template point of view there are the following four cases in which the ID-* Fault Message is
used.

When a WSP does not recognize §RgquestElement] in the SOAP Body, it MUST return an ID-* Fault Message

and useDStarMsgNotUnderstood as the value of theode attribute as specified biy_ibertySOAPBInding] In

the same way a WSC that receives an empty or misformed notification MUST return an ID-* Fault Message and use
IDStarMsgNotUnderstood as the value of theode attribute.

When a WSP receives a request message, which it does not support, it MUST return an ID-* Fault Message and use
ActionNotSupported as the value of theode attribute.

If a WSP based on identifying the requesting party notices that the requesting party is not allowed to make any requests,
it MUST return an ID-* Fault Message and usetionNotAuthorized as the value of theode attribute.

A receiving party may also encounter an unexpected error due to which it fails to handle the message body. In that
kind of a case it MUST return an ID-* Fault Message and usexpectedError as the value of theode attribute.
A service specification MAY define more cases in which ID-* Fault Message is used.

Even if the processing of some parts of a message body fails, a WSP SHOULD always try to process the message body
as well as it cans according the specified processing rules and return normal response message indicating the failed
parts in returned status codes (S=ztion 3.1.1as one message may contain multiple task requests and succeeding

in individual tasks is valuable, if the processing rules do not specify that after the first failed part the whole message
should fail. One request message may contain one or fReg@estElement] . One[RequestElement] may also

contain number of individual task request (e.g. insid&®aery> there can be multipleQueryltem> elements). So

after failing to complete one requested tasks there could be a number of other tasks requested in the same message and
a WSP SHOULD try to complete those unless service specific processing rules specify otherwise.

3.1.1. <Status> element

A [ResponseElement] element and arAcknowledgementElement> element contains oneStatus> elements
to indicate whether or not the processing gRaquestElement] element ofNotificationElement] element
has succeeded. TheStatus> element is included from the Liberty Utility Schema. <Status> element MAY
contain othekStatus> elements providing more detailed information.<8tatus> element has aode attribute,
which contains the return status as a string. The local definition of these codes is specified in this document.

This specification defines the following status codes to be used as values ¢od¢hattribute:

* ActionNotAuthorized

* ActionNotSupported

* AllReturned

* ChangeHistoryNotSupported
* ChangedSinceReturnsAll

* DataToolLong

* ExistsAlready

Liberty Alliance Project: Confidential

18

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

Liberty Alliance Project:

Liberty ID-WSF Data Services Template Specification

* ExtensionNotSupported

* Failed

* FormatNotSupported

* InvalidData

* InvalidExpires

* InvalidEndedTo

¢ InvalidEndpoint

¢ InvalidResourcelD

* InvalidSelect

* InvalidSetID

* InvalidSetReq

* InvalidSort

* InvalidSubscriptionID

* MissingCredentials

* MissingDataElement

* MissingEndpointElement
* MissingExpiration

* MissingltemID

* MissingNewDataElement
* MissingNotifyToElement
* MissingResourcelDElement
* MissingSecurityMechIDElement
* MissingSelect

* MissingSubscriptionID

* ModifiedSince

* NewOrExisting

* NoMoreElements

* NoMultipleAllowed

* NoMultipleResources

* OK

Liberty Alliance Project: Confidential

19

DRAFT Version: v2.0-06

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

693 * PaginationNotSupported

694 * Partial

695 * RequestedPaginationNotSupported
696 * RequestedSortingNotSupported
697 * SecurityMechIDNotAccepted
698 * SetOrNewQuery

699 * SortNotSupported

700 * StaticNotSupported

701 * TimeOut

702 * TriggerNotSupported

703 * TypeNotSupported

704 * UnexpectedError

705 * UnspecifiedError
706 The<Status> element may contain othesStatus> elements supplying more detailed return status information.
707 The code attribute of the top levekStatus> element MUST contain one of the following value& Partial

708 or Failed . The remainder of the values above are used to indicate more detailed return status inside second level
709 <Status> element(s).

Liberty Alliance Project: Confidential

20

710
711
712
713

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

735
736
737
738
739
740
741

742
743
744
745
746
747

748
749
750

751
752
753
754

755

756
757

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

OK
The valueOKmeans that the processing diRequestElement] element or a[NotificationElement]
element has succeeded. A second level status code MAY be used to indicate some special cases, but the
processing of §RequestElement] element or dNotificationElement] element has succeeded.

Partial
The valuePartial means that the processing has succeeded only partially and partially failed, e.g. in
the processing of &Query> element someQueryltem> element has been processed successfully, but
the processing of some otheQueryltem> elements has failed. When the valBertial is used for
the code attribute of the top levekStatus> element, the top levekStatus> element MUST have
second levekStatus> element(s) to indicate the failed part(s) ofRequestElement] element or a
[NotificationElement] element. The processing of the part(s) not referred to by any of the second
level <Status> elements MUST have succeeded. A WSP MUST NOT use the Yaluial |, if it has not
processed the who[RequestElement] element or[NotificationElement] element.
A WSP MUST NOT use the valuerartial in case of modification requests, when a failed
<Modification> element didn't have a validkemID attribute, i.e. a WSP is not able to indicate
the failed<Modification> element. In those cases a WSP MUST use the valiled and anything
changed based on the already processed part MUST be rolled back.
A WSP MAY also choose to fail completely another type[RéquestElement] , when only a part of it
has failed, if the failed part does not have a vatdthiD attribute. When ever the top level val@gailed
is used instead dfartial due to one or more missingmiID attribute(s), the second level status code
MissingltemiD ~ MUST be used in addition to any other second level status code.
In some cases the most descriptive second level status code may not be used as it e.g. might compromise the
privacy of a Principal. In those cases, when the second level status code must be used to indicate the failed
parts in a case of a partial failure, the valulespecifiedError MUST be used for the second level status
code.

Failed
The value Failed means that the processing of §RequestElement] element or a
[NotificationElement] element has failed. Either the processing of the wijiRbguestElement]
element ofNotificationElement] element has totally failed or it might have succeeded partially, but
the WSP decided to fail it completely. A specification for a service MAY also deny the use of the partial
failure and so force a WSP to fail, even when it could partially succeed. A second level status code SHOULD
be used to indicate the reason for the failure.

If a request or notification fails for some reason, tbe attribute of the<Status> element SHOULD contain the

value of thetemID attribute of the offending element in the request message. Subscription and notifications messages
usesubscriptionID andinvokelD attributes instead afemID attributes and those should be used when reporting
failure statuses related to the subelements of subscription and notification messages. When the offending element does
not have thetemID , subscriptionID orinvokelD attribute, the reference SHOULD be made using the value of

theid attribute, if that is present.

If it is not possible to refer to the offending element (as it haschpitemID , subscriptionID or invokelD
attribute) the reference SHOULD be made to the ancestor element having a proper identifier attribute closest to the
offending element.

When the reference is made using the value afiaattribute, the WSP MUST check that the request did not contain
anyitemlD attribute with the same value. If there is @amID attribute with the same value as tlde attribute of

the offending element (or the closest ancestor in case the offending element did not haveaiymID attributes),

the reference MUST NOT be made using the value ofithigttribute to make sure that the reference is clear.

3.2. Linking with ids

Different types ofd attributes are used to link queries and responses and notifications and acknowledgements together.
Response and acknowledgement messages are correlated with requests and notificationssasgagD and

Liberty Alliance Project: Confidential

21

758
759
760
761
762
763
764

765
766

767
768
769
770

771

772
773

774
775
776
77
778
779
780

781

782
783

785
786
787

789
790

792
793

794
795
796
797

798

799
800
801

802

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

refToMessagelD attributes that are present in th€orrelation> Header Block (seflibertySOAPBInding). A

WSC MUST include thenessagelD attribute in each request it sends and a WSP MUST include bothebsagelD

and therefToMessagelD attributes in each response it sends. Similarly a WSP MUST includenéissagelD

attribute in each notification it sends and a WSC MUST include bothriéssagelD and therefToMessagelD

attributes in each notification acknowledgement it sends. Use of these attributes MUST follow the processing
rules specified ifLibertySOAPBInding] Inside messageemID anditemIDRef attributes are used for linking
information inside response and acknowledgement messages to the details of request and notification messages.

See the definitions and the processing rules of the protocol elements and the processingSedésin3d.¥or more
detailed information.

Some elements in all messages can hdvattributes of typexs:ID . Theseid attributes are necessary when some

part of the message points to those element. As an example, if usage directives are used, then the usage directive
element must point to the correct element (BebertySOAPBInding). Some parts of the messages may be signed

and theid attribute is necessary to indicate which elements are covered by a signature.

3.3. Resources

All DST protocols have a defined hierarchy for addressing the data to be accessed. In the first level the desired resource
is selected. For example, a resource might be the personal profile of a certain person.

Multiple resources can be accessed in a single request, but different type of request MUST NOT be mixed in one
request message, e.g. querying and modifying can not be used simultaneously in the same request message. For each
resource there is oriBequestElement] element in a request message. Inside this element there is another element
identifying the resource. This identifying element is eitheRasourcelD> element or &EncryptedResourcelD>

element. The type definitions for both elements are imported from the Liberty ID-WSF Discovery Service schema.
For more information about resources, different types of resource identifiers and encryption of resource identifiers see
[LibertyDisco].

TheResourcelDGroup schema is shown below:

<xs:element name="ResourcelD" type="disco:ResourcelDType"/>
<xs:element name="EncryptedResourcelD" type="disco:EncryptedResourcelDType"/>
<xs:group name="ResourcelDGroup">
<xs:choice>
<xs:element ref="ResourcelD"/>
<xs:element ref="EncryptedResourcelD"/>
</xs:choice>
</xs:group>

When the<ResourcelD> element would have the valuen:liberty:isf:implied-resource (see[Liberty-
Disco]), the element MAY be left out of the containifigequestElement] element. In all other cases either the
<ResourcelD> element or th&EncryptedResourcelD> element MUST be present. SgébertyPAOS]for exam-
ples of when the valuern:liberty:isf:implied-resource can be used.

Note:

When<EncryptedResourcelD> element is used, the encryptedesourcelD> element inside it is in the
namespace ffibertyDisco], when the<EncryptedResourcelD> element itself is in the namespace of the
data service in question as well as all other elements defined in this specification.

3.3.1. Common processing rules

Liberty Alliance Project: Confidential

22

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

803 A request message can contain multitequestElement] elements as well as a notification message can contain
804 multiple [NotificationElement] elements. The following rules specify how those must be supported and handled:

805 « A receiver of a message (WSP for request messages and WSC for notification messages) MUST support one

806 [RequestElement] element inside a request message and [NiogficationElement] element inside a

807 notification message and SHOULD support multiple. If a receiver supports onlyReqaestElement] or

808 [NotificationElement] element inside a request/notification message and the message contains multiple
809 [RequestElement] or [NotificationElement] elements, the processing of the whole message MUST falil
810 and a status code indicating the failure MUST be returned in the response. A more detailed status code with the
811 valueNoMultipleResources SHOULD be returned in addition to the top level status code as it is not possible
812 to handle multiple resources in one message. If a WSP supports accessing multiple resources, it MAY register
813 urn:liberty: dst:multipleResources discovery option keyword.

814 «If a request message contains multipllRequestElement] elements or a notification mes-

815 sage contains multiple[NotificationElement] elements, the sender MUST addemiD at-

816 tributes for each[RequestElement] /[NotificationElement] element. The receiver MUST link

817 the [ResponseElement] /<AcknowledgementElement> elements it is sending to corresponding

818 [RequestElement] /[NotificationElement] elements it received using thieemIDRef attributes, if

819 there werdtemID attributes in thgRequestElement] /[NotificationElement] elements and there were

820 multiple [RequestElement] /[NotificationElement] elements in the request message.

821 If multiple [RequestElement] or [NotificationElement] elements are used in a message, a receiver
822 MUST discard any{RequestElement] or [NotificationElement] element not having a valittemID

823 attribute. For thafRequestElement] or [NotificationElement] element no<ResponseElement> or

824 [AcknowledgementElement] elementis returned as it is not possible to indicate for wiRelgquestElement]

825 or [NotificationElement] element that element is returned.

826 TheitemIDRef attribute in a[ResponseElement] /<AcknowledgementElement> element MUST have the

827 same value as theemID attribute in the correspondiri@equestElement] /[NotificationElement] ele-

828 ment.

829 «If the processing of gRequestElement] /[NotificationElement] fails for some reason, any other

830 [RequestElement] /[NotificationElement] elements included in the same message SHOULD be processed
831 normally, as if the error had not occurred as diffef@®equestElement] /[NotificationElement] elements

832 inside the same message are usually independent. When procesdiRgaqfeatElement] /[NotificationElement]

833 fails completely, the top level status cogagled MUST be used to indicate the failure and a more detailed status
834 code SHOULD be used to indicate more detailed status information. If it is possible and allowed by the service
835 specification to process successfully independent part(s) (RéyestElement] /[NotificationElement]

836 the top level status codeartial MUST be used as specified earlier. A successful request/notification MUST be
837 indicated using the top level status codk Note: even with top level status cod second level status codes

838 MAY be used.

839 A WSP must know which resource a WSC wants to access to be able to process the query. The following rules apply
840 to resource identifiers:

841 « If there is no<ResourcelD> or <EncryptedResourcelD> element in thgRequestElement] , the processing

842 of the whole[RequestElement] MUST fail and a status code indicating failure MUST be returned in the re-
843 sponse, unless thdresourcelD> element would have had the valuen:liberty:isf:implied-resource

844 (see[LibertyDisco]). In this case thecResourcelD> MAY be left out. When either th&ResourcelD> or

845 the <EncryptedResourcelD> element should have been present, a more detailed status code with the value
846 MissingResourcelDElement SHOULD be used in addition to the top level status code.

Liberty Alliance Project: Confidential

23

847
848
849
850

851

852
853

854
855
856
857
858
859

860
861
862
863
864

865
866

867
868
869
870
871

872
873
874
875
876

877
878
879
880
881
882
883

884

885

886
887
888
889

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

« If the resource identified in theResourcelD> or <EncryptedResourcelD> element does not exist, the
processing of the wholgRequestElement] MUST fail and a status code indicating the failure MUST be
returned in the response. A more detailed status code with the WakigiResourcelD SHOULD be used
in addition to the top level status code.

3.4. <Select> element

The second level of the selection is deeper inside[/eguestElement] element. The request message must
describe in more detail what it wants to access inside the specified resource. This is specBigecinr elements.

As an example, when the resource is a personal profiles3hect> can point to a home address. In the case of a
<Query> , this means that the whole home address is requested, okfaésdify> , the whole home address is being
modified, etc. When only a part of a home address is accessedSéheet> element must point only to that part,

or in the case of aModify> the parts not to be modified must be rewritten using their existing values, when whole
home address is given. Different parts of the resource can be accessed using tfRegassElement] element

as those elements can contain multipBzlect> elements in their own sub-structure.

Please note that the previous paragraph only described an example<Séleet> element may also be used
differently. It is defined to contain needed parameters, but the parameters are defined by the specification for a service
type. A service may have multiple different type of parameters characterizing data the be accessed and e.g. instead
of pointing to some point in a data structure, the content okdsect> element may e.g. list the data items to be
accessed with some quality requirements for the data to be returned.

The he<Select> element may also be omitted from a request, when all the data of a resource is accessed, e.g. queried
or modified, in one request.

The type of<Select> is SelectType . Although the type is referenced ltlyis specification, the type may vary
according to the service specifications using this schema, and therefore MUST be defined within each service schema.
As the type of theSelect> element may be quite different in different services, a service specification MUST specify

the needed processing rules, if the processing rules provided by this specification are not adequate. If there are any
conflicts the processing rules in the service specifications MUST override the processing rules in this specification.

When theSelectType is specified for a service, it must be very careful about what type of queries and modifies
needs to be supported. Typically th8elect> points to some place(s) in the conceptual XML document and it is
RECOMMENDED that a string containing an XPATH expression is useckS8alect> element in those kind of
cases. There are many other type of cases an8dfetType must be properly specified to cover the needs of a
service type.

When XPATH is used, it is not always necessary to support full XPATH. Services SHOULD limit the required
set of XPATH expressions in their specifications when full XPATH is not required. E.g. the type and the
values required to be supported for thBelect> element by the ID-Personal Profile service are specified in
[LibertyIDPP]. A service may support full XPATH even if it is not required. In that case the service MAY register
the urn:liberty:dst:fullXPath discovery option keyword. If the required set of XPath expressions does not
include the path to each element, a service may still support all paths without supporting full XPath. In that case the
service MAY register thern:liberty:dst:allPaths discovery option keyword.

3.4.1. Common processing rules
The following rules specify how theSelect> element should be processed and interpreted:
«Ifthe <Select> element is missing from a subelement gRaquestElement] element, when it is supposed to
be use, the processing of that subelement MUST fail and a status code indicating the failure MUST be returned

in the response. A more detailed status code with the velssingSelect = SHOULD be used in addition to
the top level status code. The subelements referred here ar®tleeyltem> , the <Modification> and the

Liberty Alliance Project: Confidential

24

890
891

892
893
894
895
896
897

898

899
900
901
902

903

904
905
906
907
908
909
910
911
912
913

914

915
916
917

918

919

920

921
922
923
924
925
926
927

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<Subscriptions> . All these elements are defined later with other protocol elements. Note: in some cases the
<Select> element is not needed

«If the <Select> element has invalid content, e.g. contains an invalid pointer to a data not supported by the WSP
or doesn't contain the specified parameters, the processing of the subelement containBwetfte element
MUST fail and a status code indicating failure MUST be returned in the response. A more detailed status code with
the valuenvalidSelect SHOULD be used in addition to the top level status code, unless a service specification
specifies more detailed status codes better suited for the case. Note that a data service may support extensions,
making it difficult for a requester to know the exact set of allowable values forSktect> element.

3.5. The timeStamp Attribute

A response and a notification message can also have a time stamp. This time stamp is provided so that the receiving
party can later check whether there have been any changes since a response or a notification was received, or make
modifications, which will only succeed if there have been no other modifications made after the time stamp was
received.

3.5.1. Common processing rules

*A WSP MUST add aimeStamp to a [ResponseElement] , if the processing of th¢RequestElement]
was successful and a WSP supports eitherctiamgedSince attribute or thenotChangedSince attribute or
both properly. A WSP MUST also add t@aneStamp to a [NotificationElement] , it supports either the
changedSince attribute or thenotChangedSince attribute or both properly. ThégmeStamp attribute MUST
have a value which can also be used as a value fatrtiheedSince attribute, when querying changes made after
the request for which thimeStamp was returned or the notification, which had tineeStamp . The value of the
timeStamp attribute MUST also be such that it can be used as a value fotBhangedSince attribute, when
making modifications after the request for which tineeStamp was returned or after receiving the notification
message, which carried thimeStamp and the modifications will not succeed, if there has been any modification
after this request/natification.

3.6. The <Extension> Element

All messages have atExtension> element for services which need more parameters.<HEagension> element
SHOULD NOT be used in a message, unless its content and related processing rules have been specified for the
service. If the receiving party does not support the use ofHxgension> element, it MUST ignore it.

3.7. General error handling
This subchapter defines processing rules for some general error cases.

A WSP may not support all different type of requests:

* A WSP may not support e.g. modifications at all. In the cases, when a WSP rec@RasiestElement]
which it does not support, the processing fails and the second level statusatiodlotSupported SHOULD
be returned in addition to the top level status code. A WSP MAY also register a relevant discovery option
keyword to indicate that it does not support certain type of requests although they are available based on the
specification for the service a WSP is hosting. Following discovery option keywords are specified for this purpose:
urn:liberty:dst:noQuery , urn:liberty:dst:noModify and urn:liberty:dst:noSubscribe
urn:liberty:dst:noQuerySubscriptions

Liberty Alliance Project: Confidential

25

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

928 A WSP may encounter problems other than errors in the incoming message:

929 « If the processing takes too long (for example some back-end system is not responding fast enough) the second level

930 status coddimeOut SHOULD be used to indicate this, when the request is not processed due to a WSP internal
931 time out. The WSP defines how long it tries to process before giving up and returnimgrié@ut status code.
932 Note that[LibertySOAPBInding]specifies a header block which a WSC may use to define threshold for timeout,

933 but that is different functionality and the processing rules for that are specifjetbertySOAPBinding]

934 « Other error conditions than those listed in this specification and in service specifications may occur. There are two

935 status codes defined for those cases. For cases a WSP (or WSC receiving a notification) can handle normally but
936 for which there is no status code specified, the second level statusJaspeecifiedError SHOULD be used.
937 For totally unexpected cases the second level statusWwaesipectedError SHOULD be used.

Liberty Alliance Project: Confidential

26

938

939
940
941
942
943

944

945
946
947

948
949
950
951
952

953
954
955
956
957
958

959
960
961
962

963
964

966
967
968

970
971
972

973

974
975
976
977
978
979
980

981
982
983
984

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

4. Querying Data

Two different kind of queries are supported, one for retrieving current data, and another for requesting only changed
data. These two different kind of queries can be present together in the same message. The response can contain the
data with or without the common technical attributes, depending on the request. Some common attributes are always
returned for some elements. When there are multiple elements matching the search criteria, they can be requested in
smaller sets and sorted by a defined criteria.

4.1. The <Query> Element

The<Query> element has two sub-elements. Either &ResourcelD> or the<EncryptedResourcelD> element
specifies the resource this query is aimed at. JQeeryitem> element specifies what data the requester wants from
the resource and how. There can be multygeieryltem> elements in ongQuery> .

The main content theQueryltem> element has is aSelect> element. ThecSelect> element specifies the data

the query should return and other possible service specific parameters related to the data to be returned. When the
select defines that one or more data elements should be returned, then all of these elements and their descendants are
returned unless service specific parameters filter out some or all requested data. Also privacy rules may not allow
returning some or all of the requested data.

The <Queryltem> can also have &aSort> element. The type and possible content of this element are specified by

the services using this feature. Th®ort> element contains the criteria according to which the data in the response
should be sorted. E.g. address cards of a contact book could be sorted based on names using either ascending or
descending order. As sorting is resource consuming the service specification MUST use sorting very carefully and
specify sorting only based on the data and criterias, which are really needed. In many cases sorting on the server side
is not needed at all. When sorting is needed, only very limited set of available sorting criterias should be defined.

The<Queryltem> can also have aChangeFormat> element. The value of this element specifies, in which format

the requesting WSC would like to have the data, when querying for changes. Two different formats are defined
in this specification. These formats are explained in the processing ruleSésten 4.3. The schema for the
<ChangeFormat> elementis:

<xs:element name="ChangeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

The<Queryltem> element can have two attributes qualifying the query in more detail:

includeCommonAttributes [Optional]
TheincludeCommonAttributes specifies what kind of response is requested. The default vaksdsg
which means that only the data specified in the service definition is returned. If the common attributes
specified for container and leaf elements in this document are also needed, then this attribute must be given
the valueTrue If theid attribute is used for distinguishing similar elements from one other by the service, it
MUST always be returned, even if tireludeCommonAttributes is False
Thexml:lang andscript attributes are always returned when they exist.

changedSince [Optional]
ThechangedSince attribute should be used when the requester wants to get only the data which has changed
since the time specified by this attribute. The changed data can be returned in different ways. A WSC should
specify the format it prefers using the eleme@hangeFormat> . Please note that use of thisangedSince

Liberty Alliance Project: Confidential

27

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

985 attribute does not require a service to support the common attrilmdiicationTime . The service can
986 keep track of the modification times without providing those timesnadificationTime attributes for
987 different data elements.

988 In addition to thed attribute, the<Queryltem> element can have also titemID attribute. ThistemID attribute

989 is necessary when tha&Query> element contains multipleQueryltem> elements. The response message can refer
990 toitemID attributes of the<Queryltem> elements. Also th&Query> element can have thieemID attribute.

991 <QueryResponse> elements in the response message can be mapped to the correspanging elements using
992 this attribute.

993 4.1.1. Pagination

994 When the search criteria defined in thgelect> matches multiple elements of same type and name, the WSC may
995 want to have the data in smaller sets, i.e. a smaller number of elements at a time. This is achieved by using the
996 attributescount |, offset , setlD andsetReq of the<Queryltem> element. The basic attributes are toent and

997 theoffset

998 count [Optional]

999 The count attribute defines, how many elements should returned in a response. This is the amount of the
1000 elements directly addressed by #@elect> , their descendants are automatically included in the response,
1001 if not elsewhere otherwise specified.

1002 offset [Optional]
1003 Theoffset attribute specifies, from which element to continue, when querying for more data. The default
1004 value is zero, which refers to the first element.

1005 Changes may happen while a WSC is requesting the data in smaller sets as this requires<Quitigle messages

1006 and so will cause multipleQueryResponse> s. This is not a problem for many services, but with some services
1007 this might cause problems as an inconsistent set of data may be returned to the requesting WSC. If supported by the
1008 service type and the WSP, a WSC may request that the modifications done by others are not allowed to effect what the
1009 requesting WSC gets. In the firsQuery> of a sequence, the requesting WSC includes#iiReq attribute with the

1010 valueStatic . The query response returns an identification for the set and in the following queries, this is included as
1011 the value of thesetID attribute. At the end the WSC requests that the set is dels¢¢Rleg="DeleteSet") to free

1012 the resources on the WSP side.

1013 setlD [Optional]
1014 ThesetID attribute contains an identification of a set. This must be used by a WSC, when it wants to make
1015 sure that no modifications are done to the set, while it is querying the data from the set.

1016 setReq [Optional]
1017 With thesetReq attribute a WSC is able to request that a consistent set is created for coming queries (value
1018 Static) or a set is deletedDgeleteSet).

1019 A service specification MUST specify, for which elements the pagination is supported. It is not meant to be available
1020 for each request, just for a selected type of requests. As the use of the static sets consumes more resources on the
1021 server side than normal pagination, the use of static sets must be thought carefully.

1022 4.1.2. The schema for the <Query> element

1023

1024 <xs:element name="Query" type="QueryType"/>

1025 <xs:complexType name="QueryType">

1026 <xs:sequence>

1027 <xs:group ref="ResourcelDGroup" minOccurs="0"/>

1028 <xs:element name="Queryltem" minOccurs="0" maxOccurs="unbounded">

Liberty Alliance Project: Confidential

28

1059
1060

1061
1062
1063

1064
1065
1066
1067

1068
1069

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1081
1082
1083
1084

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<xs:complexType>
<xs:sequence>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element nhame="Sort" type="SortType" minOccurs="0"/>
<xs:element ref="ChangeFormat" minOccurs="0" maxOccurs="2"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="includeCommonAttributes" type="xs:boolean" default="0"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="changedSince" type="xs:dateTime"/>
<xs:attribute name="count" type="xs:nonNegativelnteger"/>
<xs:attribute name="offset" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" type="IDType"/>
<xs:attribute name="setReq">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Static"/>
<xs:enumeration value="DeleteSet"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
</xs:complexType>

4.2. The <QueryResponse> Element

In addition to different identifiers theQueryResponse> can contain three different things: requested data elements
with some parameters, a status code and a time stamp.

The requested data is encapsulated insidata> elements. One&Data> element contains data requested by one
<Queryltem> element. If there were multipleQueryltem> elements in the:Query> , the <Data> elements are
linked to their correspondingQueryltem> elements using thiiemIDRef attributes.

If a WSC requested sorting, but a WSP does not support the requested type of sorting or sorting in general, a WSP
SHOULD return the data unsorted, but then it MUST indicate this by including the attribt8erted within the

<Data> element> carrying the unsorted data. TwSorted attribute may have either the valiwew, when the
requested sorting is not supported, but sorting in general isewar , when the sorting is not supported at all.

If a WSC was querying for changes, thBata> element may contain the attributbangeFormat to indicate in
which format the changes are returned. The schema fahtheeFormat attribute is following:

<xs:attribute name="changeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
<xs:enumeration value="All"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

The <Data> element contains also attributesxtOffset andremaining , when a smaller set of the data instead
all the data was requested using tlweint and theoffset attributes in the request. TmextOffset attribute in

a response is the offset of the first item not included in the response. So the valuenefttbiéset attribute in

a response can be used directly for tiifset attribute in the next request, when the data is fetched sequentially.

Liberty Alliance Project: Confidential

29

1085
1086

1087
1088

1124

1125
1126

1127
1128
1129
1130
1131
1132

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

Theremaining attribute defines, how many items there are after the last item included in the responsetiThe

attribute is also included, when a static set is accessed.

If there were multiple<Query> elements in the request message, ¢@ieryResponse> elements are linked to

correspondingQuery> elements withtemIDRef attributes.

The schema foxQueryResponse> is below:

<xs:element name="QueryResponse" type="QueryResponseType"/>
<xs:complexType name="QueryResponseType">
<xs:sequence>
<xs:element ref="Status"/>

<xs:element name="Data" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="itemIDRef" type="IDReferenceType"/>

<xs:attribute name="notSorted">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Now"/>
<xs:enumeration value="Never"'/>

DRAFT Version: v2.0-06

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute ref="changeFormat"/>

<xs:attribute name="remaining" type="xs:integer"/>
<xs:attribute name="nextOffset" type="xs:nonNegativelnteger" default="0"/>

<xs:attribute name="setID" type="IDType"/>

<I/xs:complexType>
</xs:element>

<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="itemIDRef" type="IDReferenceType"/>

<xs:attribute name="timeStamp" type="xs:dateTime"/>

</xs:complexType>

4.3. Processing Rules

NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

One<Query> element can contain multipkQueryltem> elements. The following rules specify how those must be

supported and handled:

« A WSP MUST support oneQueryltem> element inside aQuery> and SHOULD support multiple. If a WSP
supports only on&Queryltem> element inside aQuery> and the<Query> contains multiple<Queryltem>
elements, the processing of the whefguery> MUST fail and a status code indicating failure MUST be returned
in the response. A more detailed status code with the wedivultipleAllowed SHOULD be used in addition
to the top level status code. If a WSP supports multialaeryltem> elements inside @Query> , it MAY register

theurn:liberty:dst:multipleQueryltems

discovery option keyword.

Liberty Alliance Project: Confidential

30

1133
1134
1135
1136
1137

1138
1139
1140
1141
1142

1143

1144
1145

1146
1147

1148

1149
1150
1151
1152
1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

1168
1169
1170

1171
1172
1173
1174
1175

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

«If the <Query> contains multiple<Queryltem> elements, the WSC MUST adtmID attributes to each
<Queryltem> element. The WSP MUST link theData> elements to correspondinQueryltem> elements
using theitemIDRef attributes, if there wer@emID attributes in the<Queryltem> elements and there were
multiple <Queryltem> elements in theQuery> . TheitemIDRef attribute in a<Data> element MUST have
the same value as tlitemID attribute in the correspondingueryltem> element.

* If processing of a<Queryltem> fails, any remaining unprocesse@ueryltem> elements SHOULD NOT be
processed. The data for the already processagbryltem> elements SHOULD be returned in the response
message and the status code MUST indicate the failure to completely process the®@uwple . A more detailed
status SHOULD be used in addition to the top level status code to indicate the reason for failing to process the first
failed <Queryltem> .

The following rules specify how theSelect> element should be processed and interpreted:

« If there is nochangedSince attribute in the<Queryltem> element and th&Select> requests valid data
element(s), but there are no values, the WSP MUST NOT retureBaw> element for thakQueryltem> .

* If the <Select> requests multiple data elements, the WSP MUST return all of those data elements inside the
<Data> element corresponding to the containk@ueryltem> .

A WSC may request that the data returned is sorted.

*When the<Sort> element is included in &Queryltem> element, the data returned inside@ata> element
SHOULD be sorted according to the criteria given in #8ort> element. If a WSP doesn’t support sorting,
it SHOULD return the requested data unsorted. When the data is returned unsortedStineed attribute
MUST be used in theData> element containing the unsorted data. A WSP MAY also choose to fail to process
the <Queryltem> , if it does not support sorting. In that case the second level statusSmtiNptSupported
SHOULD be used in addition to the top level status code. A WSP may also register discovery option keyword
urn:liberty:dst:noSorting , If the sorting has been specified for the service type, but the WSP doesn’t
support it.

« If the content of the<Sort> element is not according to service specifications, a WSP SHOULD return the
requested data unsorted. When the data is returned unsortecht8oeted attribute MUST be used in the
<Data> element containing the unsorted data and the second level statuthcal@dtSort SHOULD also be
used. A WSP MAY also choose to fail to process fi@ieryltem> , if the content of thecSort> element is not
according to service specifications. In this kind of a case the second level statuswetidSort SHOULD be
used in addition to the top level status code. If the the content 6fshe> element is valid, but a WSP does not
support the requested type of sorting, it SHOULD return the requested data unsorted. When the data is returned
unsorted, theotSorted attribute MUST be used in theData> element containing the unsorted data. A WSP
MAY also choose to fail to process of th®ueryltem> , if it does not support the requested type of sorting. It
SHOULD use the second level status c&aguestedSortingNotSupported in addition to the top level status
code.

*When thenotSorted attribute is used, it MUST have the valtiew; when a WSP supports sorting, but not the
requested type or the content of #®gort> element was invalid. TheotSorted attribute MUST have the value
Never , when a WSP does not support sorting at all.

A WSC may want to receive the data in smaller sets instead of getting all the data at once, when there can be many
elements with the same name. A WSC indicates this using either or both of the atttbutesandoffset in a
<Queryltem> element, when theSelect> addresses a set of elements all having the same name. The number of
elements inside this set may be restricted further by other parameters. Also access rights and policies may reduce the
set of elements a WSC is allowed to get.

Liberty Alliance Project: Confidential

31

1176
1177
1178
1179

1180
1181
1182
1183
1184
1185
1186

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205

1206
1207
1208
1209
1210
1211
1212

1213
1214
1215
1216
1217
1218
1219

1220
1221

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

A WSP MUST always follow the same ordering procedure, whercBwect> and<Sort> elements have the

same values and either or both of attributesnt andoffset are used in th&Queryltem> element. This is

needed to make sure e.g. that a WSC really gets the next ten items, when asking for them, and not e.g. five of the
previously returned items with five new items.

When either or both of the attributesunt andoffset is used in a<Queryltem> element and a WSP doesn't
support pagination, the processing of whetgueryltem> element MUST fail and the second level status code
PaginationNotSupported SHOULD be used in addition to the top level status code. A WSP may support
pagination, but not for the requested elements. In such a case the processing ot@imoigtem> element

MUST fail and the second level status coBequestedPaginationNotSupported SHOULD be used in
addition to the top level status code. If a WSP doesn’t support pagination at all, it MAY register the discovery
option keywordurn:liberty:dst:noPagination to indicate this.

When thecount attribute is included in aQueryltem> element, the correspondingData> element in the
<QueryResponse> MUST NOT contain more elements addressed with the value ofSetect> element than
specified by thecount attribute. A WSP MAY return a smaller number of elements of the same name that
requested by a WSC. If thewunt attribute has the value zero, the WSP MUST NOT return any data elements
inside the<Data> element. Thigount="0" may be used for querying the number of remaining elements starting
from the specified offset, e.g. from offset zero, i.e. the total number of the elements addressedSuyeitte
element. When theount attribute is not used in @Queryltem> element, it means that the WSC requests for
all data specified by other parameters like ¢iselect> element starting from the specified offset. As the default
value for theoffset attribute is zero, the case when neither of the attribufisgt or count is not present
reduces to a normal query.

When pagination is requested by a WSC, the elements insidata> element MUST be in the ascending order

of their offsets. The first element MUST have the offset specified byffaet attribute in the<Queryltem>

element. The<Data> element MUST have both attributeextOffset andremaining . The nextOffset

attribute MUST have the offset of the first element not returned in the response. The valugehdirgng

attribute MUST define how many elements there are left starting from the value oétt@ffset , if a WSP

knows that (e.g. that information might not be available from a backend system). If WSP does not know the
exact value, it MUST use the value for theremaining attribute until it knows the value or there is no data left
(remaining="0"). Whenremaining="-1" , a WSC must make new requests urdihaining="0" , if it wants

to get all the data.

When thesetReq attribute is included in aQueryltem> element and has the valSeatic , the WSP SHOULD

return thesetlD attribute to the requesting WSC and proceQsieryltem> elements later having thistID

based on the data the WSP has at the time, when the value feetlbe was created. If a WSP receives a
<Queryltem> element having theetReq attribute and does not support static sets for the requested data or not at
all, the processing of theQueryltem> element MUST fail and a second level status cétigicNotSupported

SHOULD be used in addition to the top level status code. If a WSP doesn’t support static sets at all, it MAY register
the discovery option keywornarn:liberty:dst:noStatic

When thesetlD attribute is included in a request, the following parameters MUST NOT be used in a
<Queryltem> element: the<Select> element, the<Sort> element, thechangedSince attribute or the
includeCommonAttributes attribute. The requests are made from an earlier defined static set aculitine

and theoffset attributes are used to define, what is requested from that set. If any of the mentioned parameters
is present, when theetID attribute is used, it is unclear what a WSC wants and the processing of the whole
<Queryltem> MUST fail and a second level status caBetOrNewQuery SHOULD be used in addition to the

top level status code.

When thesetlD attribute is included in &Queryltem> element and has a valid value, theata> element in
the response MUST always have #&ID attribute.

Liberty Alliance Project: Confidential

32

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1222 *When a static set is created, the requesting WSC MUST query all the data it needs from this set as soon as possible

1223 and delete the static set immediately after this usitgeqg="DeleteSet" . A WSP MAY also delete the static

1224 set, even if a WSC hasn't yet requested the deletion of the static set. If a WSC tries to make a request to a
1225 non-existing static set, the processing of the whabeeryltem> MUST fail and the second level status code

1226 InvalidSetID SHOULD be used in addition to the top level status code.

1227 * ThesetReqg="Static" and thesetID attribute MUST NOT be used simultaneously in@ueryltem> element.

1228 If they are used, the WSP MUST ignore ttetReq="Static" and process theQueryltem> element like the

1229 setReq attribute would not be present.

1230 «If the setReq attribute has some other value th&mtic or DeleteSet , the processing of the whole
1231 <Queryltem> element must fail and a second level status dodalidSetReq =~ SHOULD be used in addition
1232 to the top level status code.

1233 Even when the requested data exists, it should be noted that access and privacy policies specified by the resource owner
1234 may cause the request to result in data not being returned to the requester.

1235 *When a WSP processesQueryltem> , it MUST check whether the resource owner (the Principal, for example)

1236 has given consent to return the requested information. To be able to check WSC specific access rights, the WSP
1237 MUST authenticate the WSC (s@ebertySecMech]and[LibertyMetadata). The WSP MUST also check that

1238 any usage directive given in the request is acceptable based on the usage directives defined by the resource owner
1239 (se€[LibertySOAPBInding]. If either check fails for any piece of the requested data, the WSP MUST NOT return

1240 that piece of data. Note that there can be consent for returning some data element, but not its attributes. E.g. a
1241 resource owner might not want to releasertfuwelifier ~ attribute, if she does not want to reveal information about

1242 which services she uses. The data for which there is no consent from the resource owner MUST be handled as
1243 if there was no data. The WSP MAY try to get consent from the resource owner while processing the request,
1244 e.g. by using an interaction service (deéertylnteract). A WSP might check the access rights and policies

1245 in usage directives at a higher level, before getting to DST processing and MAY, in this case, just return an ID-*

1246 Fault MessagéLibertySOAPBiInding]without processing theQuery> element at all, if the requesting WSC is
1247 not allowed to access data.

1248 ltis possible to query changes since a specified time usinghtiigiedSince attribute. The following rules specify
1249 how this works:

1250 « If the <Queryltem> element contains thehangedSince attribute, the WSP SHOULD return only those elements

1251 addressed by theSelect> which have been modified since the time specified inctiengedSince attribute.

1252 There are two different formats, in which the changed data can be returned. A WSC SHOULD indicate using
1253 the<ChangeFormat> element the format it prefers and also, if it understands the other format. The two formats
1254 areChangedElements andCurrentElements . If a service specification doesn’t specify anything else the value
1255 ChangedElements MUST be used as a default value as it is compatible with the format used in the version 1.0
1256 of the Data Services Template.

1257 « A WSP MUST ignore the<ChangeFormat> element, if thechangedSince attribute is not used in the same
1258 <Queryltem> element. A WSP MUST NOT use a format, which a WSC does not understand. Note that format
1259 ChangedElements , has the formagll as a fallback solution, when a WSP doesn’t have all the needed change
1260 history information. Also if a WSP doesn’t support requesting only changed data, it returns all data.

1261 * A <Queryltem> element MAY contain twe<ChangeFormat> element with different values. A WSP SHOULD
1262 use the format specified by the firkgthangeFormat> element, but, if it does not support that format, it MAY use
1263 the format specified by the secortChangeFormat> element.

Liberty Alliance Project: Confidential

33

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1264 « If a WSP does not support the format a WSC is requesting to be used, the processingafdtytem> MUST
1265 fail and the second level status cdelematNotSupported ~ SHOULD be used in addition to the top level status
1266 code.

1267 «If a WSC requests th€hangedElements format and a WSP supports it, the WSP SHOULD return only the

1268 changed information. if some element has been deleted, a WSP SHOULD return an empty element to indicate the
1269 deletion &ElementName/>). The only allowed exception to this is that the WSP does not have enough history
1270 information available to be able to return only the changed information. In that case it MUST use Adirnaatd

1271 return all current elements with their values even if those have not changed since the specified time.

1272 *If a WSC requests th€urrentElements ~ format and a WSP supports it, the WSP SHOULD return only the

1273 currently existing elements. It SHOULD return an empty element, if an element has not changed to indicate that
1274 no change has happenedementName/>).

1275 * Note: as empty elements are used to indicate either deleted or not changed elements depending on the used format,
1276 the formatsCurrentElements and ChangedElements do not work well, if the data hosted by a service may

1277 contain empty elements. In those cases a service should either use onlyAtrrnoatlways have some attribute(s)

1278 for the otherwise empty elements.

1279 «|If a WSC has used theChangeFormat> element in a request, a WSP MUST use ¢hengeFormat attribute

1280 in the response to indicate, which format is used. A WSP MUST not use thehsingeFormat attribute in
1281 a response, if theChangeFormat> element was not used in the corresponding request so the processing stays
1282 version 1.0 compatible, when tk€hangeFormat> element is not used.

1283 « If there can be multiple elements with same name,idhattribute or some other attribute used to distinguish

1284 the elements from each other MUST be included (e.g. in case of an ID-SIS Personal Profile service the
1285 following empty element could be returned\ddressCard id="tr7632q"/> to indicate a deleted or not

1286 changed<AddressCard> depending on the used format). If the value of itheattribute or some other attribute

1287 used for distinguishing elements with same name is changed, the WSP MUST consider this as a case, in which the
1288 element with the original value of the distinguishing attribute is deleted and a new one with the new value of the
1289 distinguishing attribute is created. To avoid this, a WSP MAY refuse to accept modifications of a distinguishing
1290 attribute and MAY require that an explicit deletion of the element is done and a new one created.

1291 « If the elements addressed by thBelect> have some values, but there has been no changes since the time
1292 specified in thechangedSince attribute, the WSP MUST return emptpata> element £Data/>), when it

1293 returns the changes properly. This empBata> element indicates that no changes have occurred. There might
1294 be cases in which the WSP is not able to return changes properly, see later processing rules. Please note that in
1295 cases that have no values,«ata> element is returned to indicate this. So emygbata> element has different

1296 semantics than missingdata> element.

1297 « If the <Queryltem> element contains thehangedSince attribute and a WSP is not keeping track of modification

1298 times, it SHOULD process theQueryltem> element as there would be nisangedSince attribute, and indicate

1299 this in the response using the second level status GhdegedSinceReturnsAll . This is not considered a

1300 failure and the rest of theQueryltem> elements MUST be processed. Also it might be that a WSP does not
1301 have a full change history and so for some queries, it is not possible to find out, which changes occurred after
1302 the specified time. As processing with access rights and policy in place might be quite complex, a WSP might
1303 sometimes process the query for changes properly and sometime process it as if there shargeusince

1304 attribute. In those cases, when a WSP returns all current values, it SHOULD indicate this with the second level
1305 status codellReturned and, if the<ChangeFormat> element was used in the request, thangeFormat

1306 attribute with the valueAll SHOULD be used. This is also not considered a failure and the rest of the
1307 <Queryltem> elements MUST be processed. Please note that the status\tRedmrmed differs from the

1308 status codeChangedSinceReturnsAll , asChangedSinceReturnsAll means that the WSP never processes
1309 thechangedSince attribute properly. A WSP MUST use eith<lReturned or ChangedSinceReturnsAll

1310 as the second level status code, when it returns data, but does not prochasdkdSince attribute properly, i.e.

1311 returns only the changes. If a WSP will not process<Qeeryltem> elements with &hangedSince attribute

Liberty Alliance Project: Confidential

34

1312
1313
1314
1315
1316
1317

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

1348
1349
1350
1351
1352
1353

1354
1355

1356
1357
1358
1359

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

at all, it MUST indicate this with top level status codigiled and SHOULD also return a second level status code
of ChangeHistoryNotSupported in the response. In this case a WSP MUST NOT return<argta> element

for the <Queryltem> element containing thehangedSince attribute. If a WSP processes thieangedSince
attribute, it MUST also support thetChangedSince attribute for<Modification> element and MAY register
the urn:liberty:dst:changeHistorySupported discovery option keyword. Please note that still in some
cases a WSP MAY returAallReturned

« Access rights and policies in place may affect how the queries for changes can work as they affect which elements
and attributes a WSC is allowed to see. If a WSC was originally allowed to get the requested data, but is no longer
after some change in access policies, then from its point of view that data is deleted and that should be taken into
account in the response. If the WSP notices that access rights have changed, and the current rights do not allow
access, it MUST return all data except the data for which the access rights were revoked, and use the second level
status code\llReturned and, if the<ChangeFormat> element was used in the request, thangeFormat
attribute with the valuall SHOULD be used. The WSP MUST NOT return empty elements for the data for
which access rights were changed even if the for@taingedElement was requested, as this might reveal the
fact that this specific data has at least existed at the service in some point of time. Please note that it might be the
case that the data was added after the WSCs access rights were revoked and the WSC was never supposed to be
aware of the existence of that data. If the WSP notices that the access rights are changed and the current rights do
allow access, it MUST consider the data for which the access rights are changed, as if it were just created.

«Both the WSC and WSP may have policies specified by the Principal for control of their data. Only by
comparing policy statements made by the WSC fliaageDirective> elements (sefibertySOAPBInding])
with policies maintained on behalf of the Principal by the WSP it is possible to fully determine the effects of
interaction between these sets of policies. As it might be too expensive to search for policies the WSC promised
to honour, when it made the original request, and this information might not even be available, the WSP might be
only capable of making the decision based on the policy changes made by the Principal. If some data is prevented
from being returned to the WSC due to conflicts in policies and the WSP notices that the Principal’s policies have
changed, it MUST return all data except that for which the Principal’s policy has denied access against the current
policy of a requesting WSC, and use the second level statusAltiigurned to indicate that the WSC must
check the response carefully to find out what has changed. Also #GhangeFormat> element was used in
the request, thehangeFormat attribute with the valu&\l SHOULD be used. The WSP MUST NOT return
empty elements for the data for which the Principal’s policy was changed even if the foharajedElements
was requested, as this might reveal the fact that this specific data was exposed by the service at some point in time.
Please note that it might be the case that that data has been added after the policies were changed and the requesting
WSC was never supposed to be aware of that data, unless it changed the policy it promises to honour. If the WSP
notices that the Principal’s policy has changed and the current policy does allow access, it MUST consider the data
for which the policy is changed as if it had been just created. If a WSC changes the policy it promises to honour,
it SHOULD make a new query withoutchangedSince attribute.

* As mentioned earlier the WSP might in some cases return all the current dataetbet> points to, and not
just the changes using specified format, even wherlthegedSince attribute is present. So the WSC MUST
compare the returned data to previous data it had queried earlier to find out what really has changed. Please note
that this MUST be done even when the WSP has processeathdhgedSince correctly, because some values
might have been changed back and forth and now they have same values that they used to have earlier, despite the
most current previous values being different.

The common attributes are not always returned. A WSC may indicate witlin¢heleCommonAttributes

attribute, whether it wants to have the common attributes or not.

«If the includeCommonAttributes is set to True, the common attributes specified by attribute
groups commonAttributes and leafAttributes MUST be included in the response, if their val-
ues are specified for the requested data elements. Alt®attributes MAY be left out, if the value is
urn:liberty:dst:acc:unknown

Liberty Alliance Project: Confidential

35

1360
1361
1362

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

«Iftheid attribute is used for distinguishing similar elements from each other by the service, it MUST be returned,
even if theincludeCommonAttributes is false. Also, when either or both of the attributesl:lang and
script are present, they MUST be returned, even ifittttiddeCommonAttributes is false

4.4. Examples

Please note that as the first examples are based ¢hiltieetyIDPP] all elements defined in this specifications are also
in the namespace defined[lrbertyIDPP].

The following query example requests the common name and home address of a Principal:

<pp:Query xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp: ResourcelD>http://profile-provider.example.com/d8ddw 6dd7m28v628</pp:ResourcelD>
<pp:Queryltem itemID="name">
<pp: Select>/pp: PP/pp: CommonName</pp: Select>
</pp:Queryltem>
<pp:Queryltem itemID="home">
<pp:Select>/pp:PP/pp: AddressCard[pp: AddressType="urn: liberty:id-sis-pp:addrType:
home"]</pp:Select>
</pp:Queryltem>
</pp:Query>

This query may generate the following response:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003 -08">
<pp:Status code="OK"/>
<pp:Data itemIDRef="name">
<pp:CommonName>
<pp:CN>Zita Lopes</pp:CN>
<pp:AnalyzedName nameScheme="firstlast">
<pp:FN>Zita</pp:FN>
<pp:SN>Lopes</pp:SN>
<pp:PersonalTitle>Dr.</pp:PersonalTitle>
</pp:AnalyzedName>
<pp:AltCN>Maria Lopes</pp:AltCN>
<pp:AltCN>Zita Ma Lopes</pp:AltCN>
</pp:CommonName>
</pp:Data>
<pp:Data itemIDRef="home">
<pp:AddressCard id="9812">
<pp:AddressType>urn:liberty:id-sis-pp:addrType:home</p p:AddressType>
<pp:Address>
<pp:PostalAddress>c/o Carolyn Lewis$2378 Madrona Beach Way North</pp:PostalAddress>
<pp:PostalCode>98503-2341</pp: PostalCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:Data>
</pp:QueryResponse>

If there was no user consent for the release of<y@ CommonName>or for the whole<pp:AddressCard> with
pp:AddressType="urn:liberty:id-sis-pp:addrType:home’ , apart from the country information, then the
response is as follows (including a timestamp, as this service supports change history).

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003 -08"
timeStamp="2003-02-28T12:10:12Z">

Liberty Alliance Project: Confidential

36

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

<pp:Status code="OK"/>
<pp:Data itemIDRef="home">
<pp:AddressCard id="9812">
<pp:AddressType>urn:liberty: id-sis-pp:addrType:home</pp: AddressType>
<pp:Address>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:Data>
</pp:QueryResponse>

If there was no<pp:CommonName>and no<pp:AddressCard> with pp:AddressType

‘urn:liberty:id-sis-pp:addrType:home’ , then the response is:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003-08"
timeStamp="2003-02-28T12:10:12Z">

<pp:Status code="OK"/>
</pp:QueryResponse>

The following request queries the fiscal identification number of the Principal with the common attributes:

<pp:Query xmins:pp="urn:liberty:id-sis -pp:2003-08">

<pp:ResourcelD>http://profile-provider. example.com/d8ddw6dd7m28v628</ pp:ResourcelD>

<pp:Queryltem includeCommonAttributes="True">
<pp:Select>/pp: PP/pp:Legalldentity/pp: VAT </pp: Select>
</pp:Queryltem>
</pp:Query>

This query may generate the following response:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003-08"
id="12345" timeStamp="2003-05-28T23:10:12Z2">
<pp:Status code="OK"/>
<pp:Data>
<pp:VAT modifier="http://www.accountingservices.com"
modificationTime="2003-04-25T15:42:112"
attributeCollectionContext="urn:liberty:dst:acc:seco ndarydocuments">
<pp:IDValue modifier="http://www.accountingservices.com"
modificationTime="2003-04-25T15:42:112"
attributeCollectionContext="urn:liberty:dst: acc:secondarydocuments">50267
7123</IDValue>
<pp:IDType modifier="http://www.accountingservices.com"
modificationTime="2003-03-12T09:12:092"
attributeCollectionContext="urn:liberty:dst:a cc:secondarydocuments">urn:|
iberty:altiDType:itcif</IDTy pe>
</pp:VAT>
</pp:Data>
</pp:QueryResponse>
<ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xmldsig #">

</ds:Signature>

The following request queries for address information which has been changed since 12:10:12 28 February 2003 UTC:

Liberty Alliance Project: Confidential

37

DRAFT Version: v2.0-06

1484

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

1501
1502
1503

1524

1525
1526
1527
1528
1529

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<pp:Query xmins:pp="urn:liberty:id-sis -pp:2003-08">
<pp:ResourcelD>http://profile-provider. example.com/d8ddw6dd7m28v628</ pp:ResourcelD>
<pp:Queryltem changedSince="2003-02-28T12:10:12Z">
<pp:Select>/pp: PP/pp: AddressCard</p p:Select>
</pp:Queryltem>
</pp:Query>

This query can generate following response:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003-08"
timeStamp="2003-05-30T16:10:12Z">
<pp:Status code="OK"/>
<pp:Data>
<pp:AddressCard id="9812">
<pp:Address>
<pp:PostalAddress>2891 Madrona Beach Way North</pp:PostalAddress>
</pp:Address>
</pp:AddressCard>
<pp:AddressCard id='wlqg2'/>
</pp:Data>
</pp:QueryResponse>

Please note that only the changed information inside<pipeAddressCard> s returned. The response shows that
after the specified time, there was also anottpgr AddressCard> present, but that has been deleted. As there can
be many<pp:AddressCard> elements, th@ attribute is returned to distinguish distinct elements.

If there have been no changes since the specified time, then the response is just:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003 -08"
timeStamp="2003-05-30T16:10:12Z">

<pp:Status code="OK"/>

<pp:Data/>
</pp:QueryResponse>

If the same request for changed addresses is made includirgdi@angeFormat> element:

<pp:Query xmins:pp="urn:liberty:id-sis -pp:2003-08">
<pp:ResourcelD>http://profile-provider. example.com/d8ddw6dd7m28v628</ pp:ResourcelD>
<pp:Queryltem changedSince="2003-02-28T12:10:12Z">
<pp:Select>/pp:PP/pp:AddressCard</p p: Select>
<pp:ChangeFormat>CurrentElements</pp:Ch angeFormat>
</pp:Queryltem>
</pp:Query>

All the current elements are returned in the response:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003-08"
timeStamp="2003-05-30T16:10:12Z">
<pp:Status code="OK"/>

Liberty Alliance Project: Confidential

38

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<pp:Data changeFormat="CurrentElements">
<pp:AddressCard id="9812">
<pp:Address>
<pp:PostalAddress>2891 Madrona Beach Way North</pp:PostalAddress>
<pp:PostalCode/>
<pp:L/>
<pp:ST/>
<pp:C/>
</pp:Address>
</pp:AddressCard>
</pp:Data>
</pp:QueryResponse>

Please note that now all the current elements inside ¢h@AddressCard> are returned. The deleted
<pp:AddressCard> is not shown at all and for the elements, which have not changed only empty elements
are returned.

If a WSP does not support change history, then the response could be:

<pp:QueryResponse xmins:pp="urn:liberty:id-sis-pp:2003 -08"
timeStamp="2003-05-30T16:10:12Z">
<pp:Status code="OK>
<Status code="ChangeSinceReturnsAll'/>
</pp: Status>
<pp:Data changeFormat="All">
<pp:AddressCard id="9812">
<pp:AddressType>urn:liberty:id-sis-pp:addrType:home </pp:AddressType>
<pp:Address>
<pp:PostalAddress>2891 Madrona Beach Way North</pp:PostalAddress>
<pp:PostalCode>98503-2341</pp: Pos talCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:Data>
</pp:QueryResponse>

The rest of the examples are related to pagination and sorting based on fictional address service, so all the DST

elements in the namespace of that fictional address service.

Parameters<Select> and<Sort> and returned&Data> elements do not have valid contents in the examples as the
main point is to show the principle how pagination works and the use of the pagination related attributes

A Resource contains 40 address cards and the WSC A wants to list those ordered by the City and 10 at the time. Due

to access rights and policies the WSC A is allowed to get only 30 of those AddressCards. The WSC A makes the first
query:

<ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
<ads:ResourcelD>http://provider.example. com/ohj243hj24</ads:Resourcel D>
<ads:Queryltem count="10">
<ads:Select>Pointing to the AddressCards</ads:Select>
<ads:Sort>Requesting sorting by the City</ads:Sort>
</ads:Queryltem>
</ads:Query>

and gets back the first ten address cards ordered by the City:

Liberty Alliance Project: Confidential

39

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1587 <ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
1588 timeStamp="2004-03-23T03:40:00Z">

1589 <ads:Status code="OK"/>

1590 <ads:Data remaining="20" nextOffset="10">first ten address cards</ads:Data>
1591 </ads:QueryResponse>

1592

1593 Then it queries the next ten starting from offset 10:

1594

1595 <ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
1596 <ads:ResourcelD>http://provider.com/ohj2 43hj24</ads: ResourcelD>
1597 <ads:Queryltem count="10" offset="10">

1598 <ads:Select>Pointing to the AddressCards</ads:Select>

1599 <ads:Sort>Requesting sorting by the City</ads:Sort>

1600 </ads:Queryltem>

1601 </ads:Query>

1602

1603 and gets those

1604
1605 <ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
1606 timeStamp="2004-03-23T03:40:20Z">

1607 <ads:Status code="OK"/>

1608 <ads:Data remaining="10" nextOffset="20">next ten address cards</ads:Data>
1609 </ads:QueryResponse>

1610

1611 After this the WSC B adds one more address card to the resource. The WSC A is allowed to get this address card, but
1612 when sorting based on the City, this new card has the offset 15. When the WSC A fetches the next ten address cards:

1613

1614 <ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
1615 <ads:ResourcelD>http://provider.com/ohj2 43hj24</ads:ResourcelD>
1616 <ads:Queryltem count="10" offset="20">

1617 <ads:Select>Pointing to the AddressCards</ads:Select>

1618 <ads:Sort>Requesting sorting by the City</ads:Sort>

1619 </ads:Queryltem>

1620 </ads:Query>

1621

1622 It gets ten address cards, but it has already received the first address card already in the previous response.

1623
1624 <ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
1625 timeStamp="2004-03-23T03:41:00Z">

1626 <ads:Status code="OK"/>

1627 <ads:Data remaining="1" nextOffset="30">next ten address cards</ads:Data>
1628 </ads:QueryResponse>

1629

1630 Finally the WSC A fetches the last address card.

1631

1632 <ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
1633 <ads:ResourcelD>http://provider.com/ohj2 43hj24</ads:ResourcelD>
1634 <ads:Queryltem count="1" offset="30">

1635 <ads:Select>Pointing to the AddressCards</ads:Select>

1636 <ads:Sort>Requesting sorting by the City</ads:Sort>

1637 </ads:Queryltem>

1638 </ads:Query>

1639

Liberty Alliance Project: Confidential

40

1640

1641
1642
1643
1644
1645
1646
1647

1648

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

and gets the 31st address card from offset 30.

<ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
timeStamp="2004-03-23T03:41:172">

<ads:Status code="OK"/>

<ads:Data remaining="0" nextOffset="31">the last address card</ads:Data>
</ads:QueryResponse>

So the WSC A didn't get this new address card added by the WSC B and got one card twice.

In an alternative scenario, if supported by the WSP, the WSC A requests a static set to be created so that simultaneous
modifications can not affect the results the WSC A gets. The initial request includestieg attribute:

<ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
<ads:ResourcelD>http://provider.com/ohj2 43hj24</ads:ResourcelD>
<ads:Queryltem count="10" setReq="Static">
<ads:Select>Pointing to the AddressCards</ads:Select>
<ads:Sort>Requesting sorting by the City</ads:Sort>
</ads:Queryltem>
</ads:Query>

In the response the first ten address cards are returned together with a handle to this static set (theetriute

<ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
timeStamp="2004-03-23T03:40:00Z">

<ads:Status code="OK"/>

<ads:Data remaining="20" nextOffset="10" setID="gfkjds98">first ten address cards</ads:Data>
</ads:QueryResponse>

In the next query the WSC A queries the next ten address card referring to the static set ustti@thattribute. The
<Select> elementis not anymore used.

<ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
<ads:ResourcelD>http://provider.com/ohj2 43hj24</ads:ResourcelD>
<ads:Queryltem count="10" offset="10" setID="gfkjds98"/>
</ads:Query>

In the response the next ten address cards are returned amdEheis still returned as always when accessing a static
set.

<ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
timeStamp="2004-03-23T03:40:00Z">

<ads:Status code="OK"/>

<ads:Data remaining="10" nextOffset="20" setlD="gfkjds98">next ten address cards</ads:Data>
</ads:QueryResponse>

When the WSC B tries to add a new address card, it doesn'’t affect the data the WSC A gets, when requesting the next
ten address cards.

<ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
<ads:ResourcelD>http://provider.com/ohj2 43hj24</ads: ResourcelD>
<ads:Queryltem count="10" offset="20" setID="gfkjds98"/>
</ads:Query>

Liberty Alliance Project: Confidential

41

1709

1710
1711
1712
1713
1714
1715

1716
1717
1718
1719

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

So the WSC A gets the last ten address card.

<ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
timeStamp="2004-03-23T03:40:00Z">

<ads:Status code="OK"/>

<ads:Data remaining="0" nextOffset="30" setID="gfkjds98">next ten address cards</ads:Data>
</ads:QueryResponse>

Finally the WSC A deletes the static set. This deletion could have been done together with the previous request, but
the WSC wanted to play safe and delete the static set only after getting all the data it wanted.

<ads:Query xmins:ads="http://www.example.com/2010/12/Add ressService">
<ads:ResourcelD>http://provider.com/ohj2 43hj24</ResourcelD>
<ads:Queryltem count="0" setID="gfkjds98" setReq="DeleteSet"/>
</ads:Query>

And the WSP acknowledges the request.

<ads:QueryResponse xmins:ads="http://www.example.com/201 0/12/AddressService"
timeStamp="2004-03-23T03:40:00Z">

<ads:Status code="OK"/>
</ads:QueryResponse>

So the addition the WSC B tried to make is not visible in the static set. Either the WSP refused to accept the addition

while WSC A was accessing the data or it created a temporary set for the WSC A to access and the modification by the
WSC B was accepted, but not visible in the temporary static set created for WSC A. In the example above the WSP
created a temporary set an so returned the same time stamp in all responses containing data from that temporary set.

Liberty Alliance Project: Confidential

42

1720

1721
1722
1723
1724

1725

1726
1727
1728
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741

1742
1743
1744
1745

1746

1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

5. Modifying Data

The data stored by a data service can be given initial values, existing values can be replaced with new values and the
data can also be removed. Usually the Principal can make these modifications directly at the data service using the
provided user interface, but these modifications may also be made by other service providetgoditye element

supports all these operations for service providers which want to modify the data store in data services.

5.1. <Modify> element

The<Modify> element has two sub-elements. Either ¢ResourcelD> or <EncryptedResourcelD> element is
used to identify the resource which is modified by this request. <Mwlification> element specifies which data
elements of the specified resource should be modified and how. There can be muitigiécation> elements in
one<Modify> .

The<Select> element inside aModification> element specifies the data this modification should affect. If the
<Select> element is not used, it means that the whole content of the Resource should be modified. In addition to this
<Select> element the other main part of tk®lodification> element is th&NewData> element. The&NewData>
element defines the new values for the data addressed kp#fert> element. The new values specified inside the
<NewData> element replace existing data, if tbheerrideAllowed attribute of the<Modification> element is

set toTrue If the <NewData> element does not exist or is empty, it means than the current data values should be
removed. The default value for thwerrideAllowed attribute isFalse , which means that theModification>

is only allowed to add new data, not to remove or replace existing datandi@eangedSince attribute is used

to handle concurrent updates. When tweChangedSince attribute is present, the modification is allowed to be
done only if the data to be modified has not changed since the time specified by the valusa€HadgedSince

attribute. The<Modification> element MUST also have thiemID attribute, when multiplecModification>

elements are included in or®odify> element and partial failure is allowed so that failed parts can be identified.

In addition to theid attribute, the<Modify> element can have also titemID attribute. This is necessary when
the request message has multigidodify> elements. The response message can refgertoD attributes of

the <Modify> elements and so mafModifyResponse> elements in the response message to the corresponding
<Modify> elements.

The schema foxModify>

<xs:element name="Modify" type="ModifyType"/>
<xs:complexType name="ModifyType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element name="Modification" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element name="NewData" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="notChangedSince" type="xs:dateTime"/>
</xs:complexType>
</xs:element>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

Liberty Alliance Project: Confidential

43

1778

1779
1780
1781
1782

1783

1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

1798

1799

1800
1801

1802
1803
1804
1805
1806
1807

1808
1809
1810
1811
1812
1813
1814
1815
1816

1817
1818
1819

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
</xs:complexType>

5.2. <ModifyResponse> element

The <ModifyResponse> element contains theStatus> element, which describes whether or not the requested
modification succeeded. There is also a possible time stamp attribute, which provides a time value that can be used
later to check whether there have been any changes since this modification, ismd@Ref attribute to map the
<ModifyResponse> elements to theModify> elements in the request.

The schema foxModifyResponse>

<xs:element name="ModifyResponse" type="ResponseType"/>
<xs:complexType name="ResponseType">
<xs:sequence>
<xs:element ref="Status"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="itemIDRef" type="IDReferenceType"/>

<xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>

5.3. Processing Rules
NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

The <Modify> can contain multiple<Modification> elements. The following rules specify how those must be
supported and handled:

« A WSP MUST support ongModification> element inside aModify> and SHOULD support multiple. If
the<Modify> contains multiple<Modification> elements and the WSP supports only emadification>
element inside aModify> , the processing of the whoteModify> MUST fail and a status code indicating failure
MUST be returned in the response. The vaN@MultipleAllowed SHOULD be used for the second level
status code. If a WSP supports multipi®lodification> element inside aModify> , it MAY register the
urn:liberty: dst: multipleModification discovery option keyword.

« If the processing of aModification> fails even partly due to some reason, depending on the service and/or a
WSP either the processing of the wheldodify> MUST fail or a WSP MUST try to achieve partial success.
The top level status codeailed or Partial MUST be used to indicate the failure (complete or partial) and a
more detailed second level status code SHOULD be used to indicate the reason for failing to completely process
the failed<Modify> element. Furthermore, thef attribute of the<Status> element SHOULD carry the value
of theitemID of the failed<Modification> element and in partial success cases it MUST carry this value. The
modifications made based on already proces3¢atiification> elements of theModify> MUST be rolled
back in case of a complete failure. A WSP MUST NOT support multpledification> elements inside one
<Modify> , if it cannot roll back and partial failure is not allowed.

*When multiple<Modification> elements inside oneModify> element are supported and partial success is
allowed, a WSC MUST use theemID attribute in eachkModification> element so that a WSP can identify
the failed parts, when it is returning status information for a partial success.

Liberty Alliance Project: Confidential

44

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1820 What is modified and how depends on a number of parameters including the value<sfetbet> element, the
1821 content of the providedNewData> element, the value of theverrideAllowed attribute, and the current content of
1822 the underlying conceptual XML document.

1823 The following rules specify in more detail how modification works:

1824 « When adding new data, theSelect> element will point in the conceptual XML document to an element which

1825 does not exist yet. The new element is added as a result of processingdtiéication> element. In such
1826 cases, when the ancestor elements of the new element do not exist either, they MUST be added as part of processing
1827 of the<Modification> element so that processing could be successful.

1828 « If the <Select> points to multiple places and there isdewData> element with new values, the processing of

1829 the <Modification> MUST fail because it is not clear where to store the new data. If there {NawData>
1830 element and theverrideAllowed attribute is set tdrue, then the processing eModification> can continue
1831 normally, because it is acceptable to delete multiple data elements at once (for example, all AddressCards).
1832 When theoverrideAllowed is set toFalse or is missing, the<NewData> element MUST be present as new
1833 data should be added. If tedlewData> element is missing in this case, the processing okMedification>

1834 MUST fail and the second level status cadssingNewDataElement ~ SHOULD be returned in addition to top
1835 level status code.

1836 *When there is theNewData> element with new values and thsSelect> points to existing information, the

1837 processing of theModification> MUST fail, if the overrideAllowed attribute is not set tdrue When

1838 the overrideAllowed attribute does not exist or is set False the new data in theNewData> element can

1839 only be accepted in two cases: either there is no existing element to whiesdleet> points, or there can be

1840 multiple data elements of the same type. This means that, §3blect> points to an existing container element,

1841 which has a subelement, and only one such container element can exididfiication> MUST fail, even

1842 if the only subelement the container element has insideltleeData> does not yet exist in the conceptual XML

1843 document. The second level status cadistsAlready SHOULD be used to indicate in details the reason for
1844 the failure in addition to the top level status code. The lack of those other sub-elements insitiewbata>

1845 means that they should be removed, which is only possible wharideAllowed attribute equals tdrue

1846 When there can be multiple elements of the same type, the addition of a new element MUST fall, if there exists
1847 already an element of same type have the same value of the distinguishing part. In the case of a personal profile
1848 service, adding a newAddressCard> element MUST fall, if there already exists aAddressCard> element

1849 which has and attribute of the same value as the provided réwdidressCard> element. The second level status

1850 codeExistsAlready SHOULD also be used to indicate the detailed reason for failure.

1851 * When all or some of the data inside #i¢ewData> element is not supported by the WSP, or the provided data is not
1852 valid, the processing of the whotavodification> SHOULD fail and second level status coldealidData
1853 SHOULD be returned in the response.

1854 * When the<Modification> element tries to extend the service either by pointing to a new data type behind an

1855 <Extension> element with theSelect> element, or having new sub-elements undet&xtension> element

1856 inside the<NewData> element and the WSP does not support extension in general or for the requesting party, it
1857 SHOULD be indicated in the response message with the second level statiBxwodeonNotSupported

1858 When the WSP supports extensions, but does not accept the contenk6éltset> or <NewData>, then second

1859 level status codelsvalidSelect andinvalidData ~ SHOULD be used as already described.

1860 The common attributes belonging to the attribute grotgamonAttributes and leafAttributes are mainly

1861 supposed to be written by the WSP hosting the data service. There are some additional rules for handling these
1862 common attributes in case of modifications.

Liberty Alliance Project: Confidential

45

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

1863 *When any of theACG modifier , ACCTime or modificationTime attributes is used in a resource, the WSP
1864 hosting the data service MUST keep their values up to date. When data is modifiedgdifier =~ MUST contain

1865 the ProviderlD of the modifier or have no value, and thadificationTime MUST define the time of the
1866 modification or have no value. TRCCMUST define the attribute collection context of the current value of a data
1867 element or have no value and theCTime MUST define the time, when the current value of #@&Cwas defined
1868 or have no value.

1869 « If the <NewData> containgnodifier , modificationTime or ACCTimeattributes for any data element, the WSP

1870 MUST ignore these and update the values based on other information than those attributes irdide Tata>

1871 provided by the WSC. If thaCcCattribute is included for any data element, the WSP MAY accept it, depending
1872 on how much it trusts the requesting service provider. The WSP MAY also accegt #teibute provided inside
1873 the<NewData> and some services MAY require that ilde attribute MUST be provided by the requesting service
1874 provider.

1875 *Theid attribute MUST NOT be used as a global unique identifier. The value MUST be chosen so that it works
1876 only as unique identifier inside the conceptual XML document, and the value iof tattribute SHOULD be kept

1877 the same even if the element is otherwise modified. A WSP MAY not even allow changing the valuadf the
1878 attribute or any other attribute used to distinguish elements with the same name from each other.

1879 * When data is modified based on thidodify> request, the values of theodificationTime attributes written

1880 by the WSP hosting the data service MAY be same for all inserted and updated elements, but there is no guarantee
1881 that they will be exactly the same. When thedificationTime attribute is used by a data service, the WSP

1882 MUST keep it up to date to indicate the time of the latest modification of an element and update it, when ever
1883 a modification is done either using th#&lodify> request or some other way. When thedificationTime

1884 attribute is used in container elements, the time of a modification MUST be propagated to all ancestor elements of
1885 the modified element all the way up to the root element.

1886 Accounting for concurrent updates is handled usingrift€hangedSince attribute inside theModification>
1887 element.

1888 * When thenotChangedSince attribute is present, the modifications specified by<kiedification> element
1889 MUST NOT be made, if any part of the data to be modified has changed since the time specified by the
1890 notChangedSince attribute.

1891 The second level status cotindifiedSince MUST be used to indicate that the modification was not done
1892 because the data has been modified since the time specified byt@angedSince attribute. If a WSP does

1893 not support processing of this attribute properly, it MUST NOT make any changes and it MUST return the second
1894 level status cod€hangeHistoryNotSupported . If a WSP supports thisotChangedSince attribute, it MUST

1895 also support thehangedSince attribute of the<Queryltem> element.

1896 A WSC might not be allowed to make certain modifications or any modifications at all.

1897 *When a WSP processes thBlodification> , it MUST check, whether the resource owner (for example, the
1898 Principal) has given consent to the requester to modify the data. To be able to check WSC-specific access
1899 rights, the WSP MUST authenticate the WSC (fiebertySecMech]and [LibertyMetadata). If the consent

1900 check fails for any part of the requested data, the WSP MUST NOT make the modifications requested in the

1901 <Modification> element, even when such consent is missing only for some subelement or attribute. The WSP
1902 MAY try to get consent from the Principal while processing the request perhaps using an interaction service (for
1903 more information seélLibertyinteract). The processing of theModification> element MUST fail, if the

1904 modification was not allowed. The second level status codi@nNotAuthorized MAY be used, if it is

1905 considered that the privacy of the owner of the resource is not compromised. A WSP might check the access rights
1906 at a higher level, before getting to DST processing and MAY return an ID-* Fault Mefisbgety SOAPBInding]

1907 and not process theModify> element at all, if the requesting WSC is not allowed to modify the data.

Liberty Alliance Project: Confidential

46

1908

1909
1910
1911
1912
1913

1914
1915
1916
1917

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

The WSP may have some restrictions for the data it is hosting.

* The schemas for different data services may have some elements for which there is not an exact upper limit on how
many can exist. For practical reasons, implementations may set some limits. If a request tries to add more elements
than a WSP supports, the WSP will not accept the new element(s) and the processinghtddifieation>
element MUST fail. The WSP should use a second level statusodereElements to indicate this specific
case.

* The schemas for different data services may not specify the length of elements and attributes especially in the
case of strings. The WSP may also have limitations of this kind. If a request tries to add longer data elements
or attributes than a WSP supports, the WSP may not accept the data and the processirylodifivation>
element will fail. The WSP should use a second level status batd&oolLong to indicate this specific case.

5.4. Examples

Please note that as the modification examples are based dhilteetylDPP] all DST elements are also in the
namespace defined jhibertyIDPP].

This example adds a home address to the personal profile of a Principal:

<pp:Modify xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp:ResourcelD>http://profile-provider .com/d8ddw6dd7m?28v628</pp:Res ourcelD>
<pp:Modification>
<pp:Select>/pp:PP/pp: AddressCard</pp:Select>
<pp:NewData>
<pp:AddressCard id="98123">
<pp:AddressType>urn:liberty:pp:addrTyp e:home</pp: AddressType>
<pp:Address>
<pp:PostalAddress>c/o Carolyn Lewis$2378 Madrona Beach Way North</pp:PostalAddress>
<pp:PostalCode>98503-2341</pp: PostalCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:NewData>
</pp:Modification>
</pp:Modify>

The following example replaces the current home address with a new home address in the personal profile of a
Principal. Please note that this request will fail if there are two or more home addresses in the profile, because it
is not clear in this request, which of those addressed should be replaced by this address. In such &l catteilbée

should be used to explicitly point which of the addresses should be changed.

<pp:Modify xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp:ResourcelD>http://profile-provider .com/d8ddw6dd7m?28v628</pp:Res ourcelD>
<pp:Modification overrideAllowed="True">
<pp:Select>/pp: PP/pp: AddressCard[pp: AddressType="urn: liberty:id-sis-pp:addrType:
home’]</pp:Select>
<pp:NewData>
<pp:AddressCard id="98123">
<pp:AddressType>urn:liberty:id-sis-pp:addrType :home</pp:AddressType>
<pp:Address>
<pp:PostalAddress>c/o Carolyn Lewis$2378 Madrona Beach Way</pp:PostalAddress>

Liberty Alliance Project: Confidential

47

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<pp:PostalCode>98503-2342</pp:Pos talCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:NewData>
</pp:Modification>
</pp:Modify>

This example replaces the current address identified ly arf'98123’ with a new home address, if that address has

not been modified since 12:40:01 21th January 2003 UTC.

<pp:Modify xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp:ResourcelD>http://profile-provider .com/d8ddw6dd7m?28v628</pp:Res ourcelD>
<pp:Modification notChangedSince="2003-01-21T12:40:01Z" overrideAllowed="True">
<pp:Select>/pp:PP/pp: AddressCard[@pp:id="9 8123']</pp: Select>
<pp:NewData>
<pp:AddressCard id="98123">
<pp:AddressType>urn:liberty:id-sis-pp:addrType: home</pp:AddressType>
<pp:Address>
<pp:PostalAddress>c/o Carolyn Lewis$2378 Madrona Beach Way South</pp:PostalAddress>
<pp:PostalCode>98503-2398</pp : PostalCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:NewData>
</pp:Modification>
</pp:Modify>

The following example adds another home address to the personal profile of a Princigel. i®\provided for the
new address.

<pp:Modify xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp:ResourcelD>http://profile-provider .com/d8ddw6dd7m28v628</pp:Res ourcelD>
<pp:Modification>
<pp:Select>/pp:PP/pp:AddressCard[pp: AddressTyp e="urn:liberty:id-sis-pp:ad
drType:home’]</pp: Select>
<pp:NewData>
<pp:AddressCard id="12398">
<pp:AddressType>urn:liberty:id-sis-pp:a ddrType:home</pp:AddressType >
<pp:Address>
<pp:PostalAddress>1234 Beach Way</pp:PostalAddress>
<pp:PostalCode>98765-1234</pp:PostalCode>
<pp:L>Olympia</pp:L>
<pp:ST>wa</pp:ST>
<pp:C>us</pp:C>
</pp:Address>
</pp:AddressCard>
</pp:NewData>
</pp:Modification>
</pp:Modify>

The following example removes all current home addresses from the personal profile of a Principal:

Liberty Alliance Project: Confidential

48

2032

2033
2034
2035
2036
2037
2038
2039
2040

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

<pp:Modify xmins:pp="urn:liberty:id-sis-pp:2003-08">
<pp:ResourcelD>http://profile-provider .com/d8ddw6dd7m?28v628</pp:Res ourcelD>
<pp:Modification overrideAllowed="True">

<pp:Select>/pp: PP/pp: AddressCard[pp: AddressType="urn: liberty:id-sis-pp:addrType:

home’]</pp: Select>
</pp:Modification>
</pp:Modify>

The response for a validModify> is as follows:

<pp:ModifyResponse xmins:pp="urn:liberty:id-sis-pp:2003-08"
timeStamp="2003-03-23T03:40:00Z">

<pp:Status code="OK"/>
</pp:ModifyResponse>

Liberty Alliance Project: Confidential

49

DRAFT Version: v2.0-06

2041

2042
2043
2044
2045
2046
2047
2048

2049
2050

2051
2052
2053

2054

2055
2056
2057
2058

2059

2060
2061

2062
2063
2064
2065

2066
2067

2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082

2083
2084

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

6. Subscriptions and Notifications

The subscriptions are a mechanism through which WSCs can request for notifications when specified event happens.
The basic case is subscribing to change notifications to get updates when the data hosted by a data service related to a
Principal changes. A WSC may subscribe to change notifications even before the data exists. E.g. a WSC may want to
know, when a Principal adds an email address to her profile, and get that email address to be able to send email to the
Principal. The change of data is not the only possible reason for a notification, there can be service specific triggers
for notifications, e.g. periodic notifications containing current values and notifications after a Principal switches on
her terminal.

As the notifications do not only reveal the data they are carrying, but also that certain thing has just happened, WSPs
must be even more careful to make sure they honor the privacy of the Principals.

Subscriptions and notifications have two basic elemesssibscription> and <Notification> . These basic
elements used by subscription and notification protocols are introduced first. After that the protocols for subscriptions
and notifications are defined.

6.1. Basic elements

The basic elementsSubscription> and<Notification> are transferred using different protocol messages and

can have slightly different content depending on a message, e.g. all the parametersSobtueiption> element

are not needed in each message. The basic elements are defined here, but their use is defined together with protocol
elements.

6.1.1. <Subscription> element

The <Subscription> element contains all the parameters for a subscription. It defines, what data a WSC wants to
have, where is should be sent, when a subscription expires, which events should trigger notifications, etc.

The first parameter inside theSubscription> element is thecSelect> element. This is the same element used
also when querying and modifying data. It defines, what data a notification should return. The useSszfd¢be
element inside theSubscription> element might be a bit different than its use when querying and modifying. The
specifications for services MUST specify possible differences.

The same<ChangeFormat> element, which is used for querying for changes, can be used, when subscribing to
change natifications. This element is used to indicate, which change formats a WSC supports and which it prefers.

The elemenkNotifyTo> contains the information a WSP needs to be able to send the requested notifications to
a requesting WSC. The type definition for thiotifyTo> element is imported fronfLibertySOAPBinding]and

the element contains three different types of subelements.<diext: Endpoint> element contains the address

to which notifications MUST be sent. There can also be one or msiesxt: SecurityMechID> elements
indicating which security mechanisms a WSP may use (it MUST NOT use any other) . A WSC may also provide
credentials, which a WSP MUST use, when sending notifications. The credentials are provided using one or more
<sb-ext:Credential> elements. Note that the type definition imported friitbertySOAPBIndinglalso contains
attributes. Attributes.actor andS.mustunderstand ~ MUST NOT be used in &NotifyTo> element. A WSC

can provide a WSP different information for sending normal notifications and for sending notifications telling that the
subscription has ended. The information for sending end notifications is providecNiotifyEndedTo> element,

which is optional and has same type definition as<4NetifyTo> element. Please note that attribu&actor
andS.mustunderstand MUST NOT be used in aNotifyfEndedTo> element either. If th&NotifyEndedTo>

element is not used, the same information provided for normal notifications is also used for end notifications. The
purpose of the<NotifyfEndedTo> element is to make it possible to receive notifications in one point and manage
subscriptions in another point, when end notifications are used.

There can be different type of notifications. E.g. a notification can be sent immediately or multiple notification could
be sent in a bigger batch. The elememype> defines, what type of notifications a WSC is requesting. The element

Liberty Alliance Project: Confidential

50

2137

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<Type> element is of type elemerypeType and this type MUST be specified by services including the detailed
semantics and allowed values.

The normal reason for a notification is that the data addressed kysthect> element has changed. There can be
also other reasons triggering notifications. Kiégger> element contains those triggers. Tdigger> element

is of type elemenTriggerType . This type MUST be defined in the services schemas and the service specifications
MUST define semantics and values for this parameter. Whesitfigger> element is not used, a WSC is requesting
normal change notifications unless otherwise specified by a service specification.

A subscription is not valid forever. Thetarts attribute defines the time after which a subscription is valid and
notifications can be sent, if the triggering event occurs. stéwes attribute MUST be used only, when a subscription
is not supposed to be valid immediately after processing the requesexpines attribute defines the time, when a
subscription expires, if not renewed before that time. Instead oéxtpiees attribute theduration attribute may

be used to indicate the duration of a subscription.

The different subscriptions related to a same resource are distinguished from each other by IDs. A WSC uses
the invokelD attribute, when creating a new subscription. After creating a subscription, it is referred by the
subscriptionID attribute. A WSP gives value to this attribute.

Usually a natification contains data related to a resource. Sometimes a notification could be used to indicate that
an event related to a resource has happened, e.g. the data addressedSeietive element has changed, without
containing the changed data. The attridutéudeData defines, should the data be included or not. The default value

is Yes. Other possible values ariio (no data is returned) andesWithCommonAttributes (the data is returned

with the common attributes).

The use of the different parameters of a subscription are defined in more detail with the protocol elements and
processing rules related to those. The schema fot$hescription> element is as follows:

<xs:element name="Subscription">
<xs:complexType>
<xs:sequence>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element ref="ChangeFormat" minOccurs="0" maxOccurs="2"/>
<xs:element name="NotifyTo" type="xs:anyURI"/>
<xs:element name="NotifyEndedTo" type="xs:anyURI" minOccurs="0"/>
<xs:element name="Type" type="TypeType" minOccurs="0"/>
<xs:element name="Trigger" type="TriggerType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="starts" type="xs:dateTime"/>
<xs:attribute name="expires" type="xs:dateTime"/>
<xs:attribute name="duration" type="xs:duration"/>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="invokelD" type="IDType"/>
<xs:attribute name="subscriptionID" type="IDType"/>
<xs:attribute name="includeData" default="Yes">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
<xs:enumeration value="YesWithCommonAttributes"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

6.1.2. <Natification> element

Liberty Alliance Project: Confidential

51

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

2138 The<Notification> element is the basic element, when either a normal notification or notification to indicate the
2139 end of a subscription is sent. The main content of ¢Netification> element is the<Data> element, which

2140 contains the data the notification carries, e.g. the current location or the changed home address. In a case of a change
2141 notification same formats as in responses to queries for changed data are used.

2142 The<Data> element may also contain some other type of data indicating what kind of an event has happened. The
2143 whole<Data> element might not be used at all as it is possible to subscribe to notifications to indicate that an event
2144 has happened, e.g. data has changed without having the data in the notification message.

2145 In addition to the<Data> element the<Notification> element has a number of attributes. There are two ID
2146 attributes:invokelD and subscriptionID . TheinvokelD attribute is only used to in the initial reply to the
2147 subscription and after that tebscriptionlD attribute is used.

2148 The changeFormat attribute MUST be used to indicate the used format for data changes in case of a change
2149 notification unless only one format is specified to be used for the service type in question.

2150 The expires attribute is used to indicate in a notification message the time, when the subscription will expire.
2151 Instead of theexpires attribute theduration attribute may be used to indicate, how long the subscription is
2152 still valid. In an end notification thendReason attribute can be used to indicate the reason for the end of the
2153 subscription. This might give some indication to a WSC that a WSP is having some problems or whether it makes
2154 sense or not for a WSC to try to make the subscription again. eRdReason attribute is not used in normal

2155 notifications, only when notifying that a subscription has ended. Possible values émtkeason attribute include:

2156 urn:liberty:dst:endreason:unspecified , urn:liberty:dst:endreason:wscnotacknowledging ,
2157 urn:liberty:dst:endreason:resourcedeleted , urn:liberty:dst:endreason: expired and
2158 urn:liberty:dst:endreason:credentialsexpired . A WSP must be careful not to compromise the

2159 privacy of a Principal, when sending the reason codes for ending a subscription.

2160 The schema for theNotification> element is as follows:
2161

2162 <xs:element name="Notification">

2163 <xs:complexType>

2164 <xs:sequence>

2165 <xs:element name="Data" minOccurs="0">
2166 <xs:complexType>

2167 <xs:sequence>

2168 <xs:any minOccurs="0" maxOccurs="unbounded"/>
2169 </xs:sequence>

2170 </xs:complexType>

2171 </xs:element>

2172 </xs:sequence>

2173 <xs:attribute name="id" type="xs:ID"/>

2174 <xs:attribute name="invokelD" type="IDType"/>
2175 <xs:attribute name="subscriptionID" type="IDType"/>
2176 <xs:attribute ref="changeFormat"/>

2177 <xs:attribute name="expires" type="xs:dateTime"/>
2178 <xs:attribute name="duration" type="xs:duration"/>
2179 <xs:attribute name="endReason" type="xs:anyURI"/>
2180 </xs:complexType>

2181 </xs:element>

2182

2183 6.2. Protocol elements

2184 There are eight different protocol elements defined in following subchapters, half of them are responses to
2185 the others. A WSC may send theSubscribe> and <QuerySubscription> elements and receive back the
2186 <SubscribeResponse> and <Subscriptions> elements. Based on existing subscriptions a WSP may sent
2187 to a WSC<Notify> and<Ended> elements and may get back as acknowledgemeXtsifyResponse> and

2188 <EndedResponse> elements.

Liberty Alliance Project: Confidential

52

2189

2190

2191
2192

2193
2194
2195
2196
2197
2198
2199
2200

2201

2233
2234

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

6.2.1. Subscribing notifications and modifying subscriptions
6.2.1.1. <Subscribe> element

The <Subscribe> element is used to subscribe to notifications, modify existing subscriptions, renew subscriptions
which are about to expire and cancel subscriptions which a WSC does not need any more.

The <Subscribe> element has two main parts, first it has either thResourcelD> element or the
<EncryptedResourcelD> element to specify the resource in question and then <thagbscription> ele-

ments. One<Subscribe> element can have multipleSubscription> elements related to the same resource.

The <Subscribe> element has also the anditemID attributes to be used in the same way as they are used in
other request messages. Also one new attribute is defisdhCurrentValues , the default value iSrue . If a

WSC doesn’t want to get the current values of the data as part of the response8ultheribe> |, it can set it to

False. Please note that there are cases in which this attribute is meaningless. If the start time has been defined for a
subscription, no current values are returned by the response.

The content of theSubscription> elements depends, what a WSC wants to do. The rules are simple:

* For new subscription, out afivokelD and subscriptionID attributes there is only thiavokelD attribute.
The subscriptionID attribute MUST NOT be used, when a WSC requests for a new subscription. The rest of
parameters are used normally.

«For renewing an existing subscription tlsebscriptionID attribute MUST be used to identify the right
subscription and thexpires or theduration attribute MUST be used to indicate the requested lifetime of
the subscription. Thal MAY be used, if needed. As renewing can be combined with other modifications to an
existing subscription, other content is also allowed excepintfukelD attribute, which MUST NOT be used.

«For canceling an existing subscription, a WSC MUST use dhigscriptionID attribute to identify the
subscription and no other content is allowed, exceptdh®AY be used, if needed.

« For modifying an existing subscription, thebscriptionID attribute MUST be used to identify the right
subscription and the changed information MUST be provided. If any of the elemeSdgct> , <Type>,
<Trigger> or <Extension> has changed, the element must be provided with the requested current content.
This means that if one of the triggers has changed and two other triggers haven't, they all must be provided as
part of the<Trigger> element. In case some of those four elements doesn't have any content anymore, an empty
element must be provided to indicate the deletion, €Tgigger/> . If there is no changes e.g. #fdrigger>
the<Trigger> elementis not present in the message.

The schema for theSubscribe> element is as follows:

<xs:element name="Subscribe" type="SubscribeType"/>
<xs:complexType name="SubscribeType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element ref="Subscription" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>

</xs:complexType>

6.2.1.2. <SubscribeResponse> element

The response to theSubscribe> has two main parts. There are thgtatus> element and theNotification>
element(s). The&Notification> element is allowed to have thevokelD attribute only, when it is the response

Liberty Alliance Project: Confidential

53

2235
2236
2237
2238

2239

2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252

2253

2254

2255
2256

2257
2258
2259
2260
2261
2262
2263

2264
2265
2266
2267

2268
2269
2270
2271
2272
2273
2274

2275
2276
2277
2278
2279
2280
2281

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

to the initial subscription, after that there is imookelD associated with the subscription as #uéscriptionID

is used. So, when a WSP is responding to subscription modifications, renewal and deletion, there MUST NOT be an
invokelD attribute. TheimeStamp attribute is provided to be used e.g. for the value ofthengedSince attribute

in <Query> after the subscription has expired.

The schema for theSubscribeResponse> element is as follows:

<xs:element name="SubscribeResponse" type="SubscribeResponseType"/>
<xs:complexType name="SubscribeResponseType">

<xs:sequence>
<xs:element ref="Status"/>
<xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>

</xs:complexType>

6.2.1.3. Processing rules

NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

The same<Subscribe> element can be used for a number of tasks: to create a new subscription, to renew, modify
and cancel an existing subscription.

When a WSC has included thevokelD attribute in a<Subscription> element, this<Subscription>

element is used to create a new subscription. A WSC MUST NOT pubscriptionID attribute into the

same <Subscription> element. If both theubscriptionID and theinvokelD attributes are in the same
<Subscription> element sent by a WSC, the receiving WSP MUST discard 4Babscription> element

and SHOULD use in the response the second level statusNm@@rExisting to indicate that it has failed to
process theSubscription> element as it has not been clear does a WSC want to create a new subscription or
modify an existing subscription.

When a new subscription is created, a WSP MUST returnriekelD attribute with the same value as the
requesting WSC used for it. A WSP MUST also create a new ID for the subscription to be used in the notifications
and further requests. This ID MUST be returned in sabscriptionlD attribute of the<Notification>

element return in theSubscribeResponse> related to the<Subscribe> element in the request message.

When a WSC wants to cancel an existing subscription,<thabscription> element MUST have only the

subscriptionID attribute to indicate, which subscriptions a WSC wants to cancel. IDAmttribute MAY
also be used, if needed. If a WSC wants to cancel all subscriptions related to the same resource, it MUST
use an emptySubscription> element (i.e. <Subscription/> element) which MUST NOT have the

subscriptionID attribute. Again anD attribute MAY also be used, if needed. If any other content in addition
to thesubscriptionID attribute and possibli@ attribute is used, a WSP MUST process saibscription>
element as it would be a request to modify or renew an existing subscriptions.

When a WSC wants to modify an existing subscription, it MUST ser&wubscription> element which has

the subscriptionID referring to an existing subscription. Only the changed values MUST be included in the
<Subscription> element. E.g. if a WSC does not want to change the type of the subscription, it does not
need to include theType> element. The existing values of a subscription for the parameters included in the
<Subscription> element MUST be overwritten with the values provided in ¢8abscription> element, if

a WSP supports the provided new values (see rest of the processing rules in this chapter and also the common
processing rules iBection 3.

Liberty Alliance Project: Confidential

54

2282
2283

2284
2285
2286

2287
2288

2289
2290

2201
2292
2293

2294
2295
2296
2297
2298
2299
2300

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315

2316
2317
2318
2319
2320
2321
2322

2323
2324
2325

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

For each successfalubscription> element in the request a WSP MUST returaNgtification> element in
the response, even when no data is returned to confirm the expiration time/duration of the subscription.

* A <Notification> element MUST have theubscriptionID of the subscription it is related to. If the
<Subscription> element was sent to cancel all existing subscription, the correspordioigfication>
element in thecSubscribeResponse> MUST NOT have thesubscriptionID attribute at all.

*The attributeendReason MUST NOT be used in a<Notification> element, when sending it in a
<SubscribeResponse> element. If a subscription was not accepted, the reason is indicated with status codes.

A subscription must contain the address to which notifications should be sent and other information needed by a WSP
to be able to send the requested notifications.

« Ifthe <NotifyTo> elementis missing from&Subscription> element, the processing of thBubscription>
MUST fail and a second level status coBligssingNotifyToElement indicating this SHOULD be used in
addition to the top level status code.

* The <NotifyTo> element MUST contain at least tk&ndpoint> element, which MUST contain a complete
URIL. If the <Endpoint> elementis missing from<aNotifyTo> element, the processing of thBubscription>
containing this<NotifyTo> element MUST fail and a second level status ctissingEndpointElement
indicating this SHOULD be used in addition to the top level status code. Also, if a WSP is able to verify the validity
of the address provided in the&ndpoint> element and finds out that the address is not valid, the processing of
the <Subscription> MUST fail and a second level status cddealidEndpoint indicating this SHOULD be
used in addition to the top level status code.

A WSC SHOULD also provide one or moreSecurityMechlD> elements to indicate, which security mech-
anisms it supports. TheSecurityMechiD> elements MUST be specified according [tabertySecMech]

and the mechanisms SHOULD be listed in the order of preference by the WSC. If a WSC does not provide
<SecurityMechID> element, the default ign:liberty:security: 2003-08:null:null , which MUST be

avoided, when releasing privacy sensitive data (the case almost every time with identity services). A WSP MUST
refuse to use mechanisms, which it considers to be not good enough, also Principal owning the resource may have
set some security requirements, which a WSP MUST follow. If a WSP wants to geStuwarityMechID>

element, but it is not included, the processing of #sabscription> element MUST fail and a second level

status codeMissingSecurityMechIDElement indicating this SHOULD be used in addition to the top level
status code. If a WSP does not support or accept any of the proposed security mechanisms, it MUST NOT accept
the subscription and so the processing of #s&bscription> element MUST fail and a second level status
codeSecurityMechIDNotAccepted indicating this SHOULD be used in addition to the top level status code.
Some of the security mechanisms require also credentials and a WSC MUST provide those also. If credentials are
needed, but they are not provided, the processing of$escription> element MUST fail and a second level

status cod@lissingCredentials indicating this SHOULD be used in addition to the top level status code.

The information provided in aNotifyTo> element is also used, when sending end notifications unless separate
<NotifyEndedTo> element is provided. The information in a providedotifyEndedTo> element replaces

the information in a<NotifyTo> element. Please note thakBotifyEndedTo> element might contain only a
different endpoint for end notifications, in which case the same security mechanisms and credentials provided in
a<NotifyTo> element are used. The processing rules for the subelements\ofifyEndedTo> element are

the same as for subelements ofNotifyTo> element except theEndpoint> element is not mandatory as the
value provided in a<NotifyTo> element may be used (see previous paragraph).

* Please note that if needed credentials expire earlier than a subscription is suppose to expire and a WSC does
not provide new credentials before they expire, the subscription will expire as a WSP is not able to send the
notifications anymore.

Liberty Alliance Project: Confidential

55

2326
2327

2328
2329
2330
2331
2332

2333
2334
2335
2336
2337

2338

2339
2340
2341
2342
2343

2344
2345
2346
2347

2348
2349
2350
2351
2352
2353
2354

2355
2356
2357

2358
2359

2360
2361
2362
2363
2364

2365

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

There might be different type of notifications and different triggers causing those. A WSP may not support all different
type of features available.

« A WSP MUST follow the processing rules defined in the specification for the service a WSP hosting for the
elements<Type> and <Trigger> . If the use of these elements is not specified for the service, but either
of both of them are included in &Subscription> element in a<Subscribe> request, the processing of
the <Subscription> MUST fail and a second level status code indicating this SHOULD be used, either
TypeNotSupported or TriggerNotSupported

« If a WSP does not support tk&ype> of the notification a WSC requests, the processing ofbscription>
MUST fail and a second level status coti@eNotSupported indicating this SHOULD be used in addition to the
top level status code. Similarly if a WSP does not supporktirigger> a WSC requests, the processing of the
<Subscription> MUST fail and a second level status cobiiggerNotSupported indicating this SHOULD
be used in addition to the top level status code.

A WSC may request, when the first notification may be sent and when a subscription should expire.

« If a <Subscription> element contains starts attribute, that subscription, if accepted, MUST be valid after
the time defined by thistarts attribute. If there is natarts attribute used, then that subscription, if accepted
by a WSP, MUST be valid immediately after processing the request. Also, if the time specified digrthe
attribute is in the past, then that subscription, if accepted by a WSP, MUST be valid immediately after processing
the request.

 The time specified by thexpires attribute MUST be the same time or a later time than the time specified by the
starts attribute in the sameSubscription> element. It also MUST be later than the current time. If either of
the checks is not passed, then the processing of$hbscription> MUST fail and a second level status code
InvalidExpires indicating this SHOULD be used in addition to the top level status code.

« A WSP MAY change the time when a subscription expires from the expiration time requested by a WSC with
the expires or duration attribute. A WSP MAY shorten the expiration time, but it MUST NOT make the
expiration time longer. If n@xpires orduration attribute is not included in @Subscription> elementin a
<Subscribe]> request from a WSC, a WSP MUST specify the expiration time for the subscription, if expiration
times are required either by the service specification or the WSP. A WSP MUST use the same attribute a WSC
used in a request to specify the expiration tiragp(res or duration), unless otherwise specified in a service
specification. A service specification MAY define that only either of those may be used.

« If a WSC wants to renew an existing subscription, which is about to end, it MUST modify that subscription and
give a new value for thexpires or duration attribute of that subscription. A WSP MAY modify the new value
in the same way as it MAY modify the proposed value for a new subscription.

« When expiration times are used, a WSP MUST includesitpires or duration attribute with the current value
in each<Notification> element included in aSubscribeResponse> element.

*There are two special cases available using subscriptions expirations. Whetarthe and theexpires
attributes have exactly same values, the meaning is that a notification MUST be sent exactly at that time. When the
duration attribute is set to zero (e.gP0D"), the subscription expires immediately after first notification. Note:
when a WSC wants to create subscription, which is valid only for a very short time it MUST explicitly specify a
very short duration and not try to use a value equally to zero.

A WSC may want to get the current values a the data when subscribing to notifications.

Liberty Alliance Project: Confidential

56

2366
2367
2368
2369
2370

2371
2372
2373
2374

2375
2376

2377
2378

2379
2380
2381
2382
2383
2384
2385
2386
2387
2388

2389
2390
2391
2392
2393
2394
2395

2396
2397
2398

2399

2400

2401
2402
2403

2404

2405
2406
2407
2408
2409

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

« The default value of theeturnCurrentvalues attribute isyes, so by default a WSP MUST include the current
values in the response. If a WSC sets the value ofetuenCurrentvalues to No, a WSP MUST NOT return
the current values in the response. Also if theudeData in the <Subscription> element is set tdlo, the
data for that subscription MUST NOT be included in the response even, ié¢tlha@CurrentValues attribute
has the valu&es.

 The current values of the data addressed by8wect> element of a«Subscription> element are included in
the<Data> element of the correspondirg)lotification> element. The data inside th®ata> element MUST
be selected in the same way as in a normal query &egtion 4. If theincludeData in the <Subscription>
has the valugeswithCommonAttributes , the existing common attributes MUST be returned with the data.

« A WSP MUST NOT return thecData> element, when a WSC is modifying, renewing or canceling existing
subscription unless a WSC is modifying thgelect> element of a subscription.

The access and privacy policies specified by the resource owner may not allow a WSC to subscribe to the data of a
resource or to some events related to a resource.

*When a WSP processes8ubscription> element, it MUST check whether the resource owner (the Principal,
for example) has given consent to return the requested information in notification messages. To be able to check
WSC-specific access rights, the WSP MUST authenticate the WS(L({bestySecMech]and [LibertyMeta-
data). The WSP MUST also check that any usage directive given in the request is acceptable based on the usage
directives defined by the resource owner (deleertySOAPBInding). If either check fails, the WSP MUST NOT
accept the subscription and the processing of<Babscription> MUST fail. The WSP MAY try to get consent
from the Principal while processing the request, perhaps by using an interaction servitéegnteract). A
WSP might check the access rights and policies in usage directives at a higher level, before getting to DST pro-
cessing and MAY, in this case, just return an ID-* Fault MesdageertySOAPBInding]without processing the
<Subscribe> element at all, if the requesting WSC is not allowed to subscribe to data or event in question.

« Note that there can be consent for subscribing to some data element, but not its attributes. A Principal might not
want to release theodifier attribute, if she does not want to reveal information about which services she uses.
If a WSC is not allowed to get all the data, but some data it wants, a WSP SHOULD accept the subscription, but it
MAY also reject it. If a subscription is accepted, the data for which there is no consent from the Principal MUST
be handled as if there was no data, i.e. that data MUST NOT be returned in the response message, even if the
current values should be returned. Also that data MUST NOT be included in the naotification messages sent later
on.

«If a WSC has made a subscription and included the usage directive it has promised to obey and later wants to
change the usage directive, it MUST cancel the subscription and make a new subscription with the new value for
the usage directive.

6.2.2. Querying existing subscriptions
6.2.2.1. <QuerySubscriptions> element

The existing subscriptions can also be queried. The purpose is to list all the currently active subscriptions the requesting

WSC has related to the specific resource. Either<tResourcelD> element or the<EncryptedResourcelD>

element is used to identify the resource.

The schema for theQuerySubscriptions> element is as follows:

<xs:element name="QuerySubscriptions" type="QuerySubscriptionsType"/>
<xs:complexType name="QuerySubscriptionsType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>

Liberty Alliance Project: Confidential

57

2417
2418

2419
2420

2421

2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433

2434

2435

2436
2437
2438

2439
2440

2441
2442

2443
2444
2445

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
</xs:complexType>

6.2.2.2. <Subscriptions> element

The response to theQuerySubscriptions> is a list of <Subscription> elements inside aSubscriptions>
element. ThénvokelD MUST NOT be used irxSubscription> elements returned.

The <Status> element is also included in theSubscriptions> element to indicate, how the processing of the
<QuerySubscriptions> succeeded.

The schema for theSubscriptions> element is as follows:

<xs:element name="Subscriptions" type="SubscriptionsType"/>
<xs:complexType name="SubscriptionsType">
<xs:sequence>
<xs:element ref="Status"/>
<xs:element ref="Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
</xs:complexType>

6.2.2.3. Processing rules

NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

*« A WSP MUST return in a response to<@uerySubscriptions> all valid subscriptions a WSC has related to
the specified resource at the WSP. Gsabscription> element MUST be used for each valid subscription the
request WSC has.

« If a WSC does not have any valid subscriptions at a WSP related to the specified resource, the WSP MUST NOT
return any<Subscription> element in the<Subscriptions> element.

* A <Subscription> element in a<Subscriptions> element MUST have all the parameters currently valid for
it.

A <Subscription> element in a<Subscriptions> element MUST have aubscriptionID attribute and

MUST NOT have anvokelD attribute as anvokelD is not valid after the response to the original request to
create a new subscription.

Liberty Alliance Project: Confidential

58

2446

2447

2448
2449
2450
2451
2452

2453

2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465

2466

2467
2468

2469
2470

2471

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482

2483

2484

2485
2486

2487
2488

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

6.2.3. Sending notifications
6.2.3.1. <Notify> element

The subscriptions are made to get the notifications about data changes and other evertsotifyhe element
is used to carry theNotification> elements. A<Notification> element inside aNotify> element is not
allowed to have thendReason attribute as the subscription has not ended. Ending must be indicated withddd

message. TheémeStamp attribute is provided to be used e.g. for the value ofrtb&€hangedSince attribute in

<Modify> after the subscription has expired.

The schema for theNotify> element is as follows:

<xs:element name="Notify" type="NotifyEndedType"/>
<xs:complexType name="NotifyEndedType">
<xs:sequence>
<xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>

6.2.3.2. <NotifyResponse> element

The response to aNotify> acknowledges the receivedvotification> elements and so it just contains the
<Status> element.

The <Notify> messages may not always be acknowledged. A service specification MUST define are these

acknowledgements used or not or is it an implementation/deployment specific decision.

The schema for theNotifyResponse> element is as follows:

<xs:element name="NotifyResponse" type="NotifyEndedResponseType"/>
<xs:complexType name="NotifyEndedResponseType">
<xs:sequence>
<xs:element ref="Status"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
</xs:complexType>

6.2.3.3. Processing rules

NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

*« A WSP MUST send a notification message to a WSC, which has made a subscription, when an event defined by

the parameters of that subscription happens.

* When sending a notification message to a WSC, a WSP MUST use the information provideeNiotifyd o>
element (endpoint, security mechanism and credentials).

Liberty Alliance Project: Confidential

59

2489
2490
2491

2492
2493

2494
2495
2496
2497
2498
2499

2500
2501
2502
2503
2504

2505
2506
2507
2508
2509
2510
2511
2512
2513
2514

2515
2516

2517
2518
2519
2520

2521
2522
2523

2524

2525

2526
2527
2528

2529

2530
2531
2532

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

« If the receiving WSC can not process successfully one okthification> elements inside oneNotify>
element, it SHOULD process normally the rest of #iotification> elements and try to achieve a partial
success. A WSC MUST support multipt@lotification> elements inside oneNotify> element.

* A <Notification> element inside a notification message MUST NOT havénawkelD or a endReason
attribute. If there are a WSC MUST discard them.

* A <Notification> element inside a notification message MUST hawikgscriptionID attribute to iden-
tify the subscription based on which the notification message is sent. IsubsriptionID attribute
is missing, the processing of thaNotification> element MUST fail and a second level status code
MissingSubscriptionID SHOULD be used in addition to a top level status code. If a WSC does not rec-
ognize the value of aubscriptionID attribute, the processing of thaNotification> element MUST fail
and a second level status cddealidSubscriptionID SHOULD be used in addition to a top level status code.

* A <Notification> element inside a notification message MUST havesitpires or theduration — attribute,

when subscription expiration is used. When a WSC receiving a notification knows thakgies or

the duration attribute should have been used, but it is not, it SHOULD use the second level status code
MissingExpiration . A WSC MUST decide is this a failure or not, but it SHOULD anyway indicate to a
WSP that it was expecting thexpires or theduration attribute.

« If a <Notification> element is supposed to contain data about a resource (i.eclimeData attribute of a
subscription has either the valies or YeswithCommonAttributes), the<Data> element MUST be used in a
<Notification> element. The content of<Data> element MUST be according to the parameters of the related
subscription and the related event, which has causedhitfication> element to be sent inside a notification
message. In case of a change notification the same formatting rules for the content as in case of a query for changes
MUST be followed (se&ection 4. A WSP MUST NOT include any data, which the WSC is not allowed to get
based on access rights and privacy policies defined by the resource ownetDdfaa element should have
been included in aNotification> element, but it is missing, the processing of ¢etification> element
MUST fail and a second level status cad&singDataElement ~ SHOULD be used in addition to the top level
status code.

« For change notification ehangeFormat attribute MUST be added for<Data> element to indicate the format
used to shown the changes, if a service specification has not mandated only one specific format to be used for this.

« If the data inside aData> element is invalid, the processing of thEotification> element MUST fail and a
second level status codlevalidData ~ SHOULD be used in addition to the top level status code. A WSC MUST
accept all the data, which can be consider as possible normal extension, if extensions are allowed for a service
based on the service specification.

« A WSP SHOULD resend a notification for which it does not get an acknowledgement in reasonable time, if
acknowledgements are used. If a WSP does not get acknowledgments at all within its time and other limits, it
MAY cancel the related subscription.

6.2.4. Notifying the end of a subscription
6.2.4.1. <Ended> element

There is also another kind of a notification message. Jheled> message indicates that the subscription has ended
for one reason or another. The content of¢tBaded> is the same as for theNotify> with the difference that now
theendReason attribute must be present in th#lotification> element(s) and neData> element is used.

The schema for theEnded> element is as follows:

<xs:element nhame="Ended" type="NotifyEndedType"/>

Liberty Alliance Project: Confidential

60

2541
2542
2543
2544

2545
2546
2547

2548
2549
2550
2551
2552

2553
2554
2555
2556
2557
2558

2559
2560

2561

2562
2563

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

6.2.4.2. <EndedResponse> element
The response to theEnded> is similar to the response to th@lotify> , so mainly only the<Status> element.

The schema for theEndedResponse> element is as follows:

<xs:element name="EndedResponse" type="NotifyEndedResponseType"/>

6.2.4.3. Processing rules

NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

*When a subscription is not anymore valid, a WSP MUST send an end notification to indicate this, if end
notifications are used. The information provided in ¢netifyfEndedTo> element of the subscription MUST be
used. If the<NotifyEndedTo> element has not been used or it doesn’t contain all the information, the information
provided in the<NotifyTo> element of the subscription is used to complement.

* A <Notification> element inside an end notification message MUST have the attribatifeason and
subscriptionID and it MAY also have thé& attribute, if needed, but it MUST NOT have any other content. If
it has, the receiving WSC SHOULD ignore the other content.

*The value of anendReason attribute SHOULD be eithenrn:liberty:dst:endreason:unspecified ,
urn:liberty:dst:endreason:expired , urn:liberty:dst:endreason:credentialsexpired ,
urn:liberty:dst:endreason:wscnotacknowledging orurn:liberty:dst:endreason:resourcedeleted
It MAY also have some service or implementation specific value. A WSP MUST be careful not to use any values
which might compromise the privacy of a Principal.

* A <Notification> element inside an end notification message MUST hawabacriptionID attribute
to identify the subscription which has ended. If thébscriptionID attribute is missing, the process-
ing of that <Notification> element MUST fail and a second level status ctissingSubscriptionID
SHOULD be used in addition to a top level status code. If a WSC does not recognize the value of a
subscriptionID attribute, the processing of thaiotification> element MUST fail and a second level
status codénvalidSubscriptionID SHOULD be used in addition to a top level status code.

« AWSP SHOULD resend an end natification for which it does not get an acknowledgement in reasonable time, if
acknowledgements are used.

6.3. Examples

TBA, when a service specification using subscriptions and notifications exists (if not in reasonable time imaginary
examples will be invented).

Liberty Alliance Project: Confidential

61

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

7. The Schema for the DST Protocols

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:disco="urn:liberty:di sco:2004-12"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmins:sb20="urn:liberty:sb:2004-12">

<xs:include schemalocation="liberty-idwsf-utility-v2.0.xsd"/>

<xs:import namespace="urn:liberty:disco:2004-12" schemalocation="Iliberty-idwsf-disco-svc
-v2.0.xsd"/>

<xs:import namespace="urn:liberty:sh:20
04-12" schemalocation="liberty-idwsf-soap-binding-v2.0.xsd"/ >

<xs:annotation>
<xs:documentation>
The source code in this XSD file was excerpted verbatim from:

Liberty ID-WSF Data Services Template Specification
Version 2.0-06 Draft
22 November 2004

Copyright (c) 2004 Liberty Alliance participants, see
http://www.projectliberty.org/specs/id wsf_copyrights.html

NOTE: This schema must be used within the context of another schema -
It is not intended to validate by itself.

The scheme which includes this must provide definitions for:
TypeType

SelectType

TriggerType

</xs:documentation>
</xs:annotation>
<xs:element name="ResourcelD" type="disco:ResourcelDType"/>
<xs:element name="EncryptedResourcelD" type="disco:EncryptedResourcelDType"/>
<xs:group name="ResourcelDGroup">
<xs:choice>
<xs:element ref="ResourcelD"/>
<xs:element ref="EncryptedResourcelD"/>
</xs:choice>
</xs:group>
<xs:element hame="ChangeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:attribute name="changeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
<xs:enumeration value="All"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<l-- Querying Data -->
<xs:element name="Query" type="QueryType"/>
<xs:complexType name="QueryType">
<xs:sequence>

Liberty Alliance Project: Confidential

62

DRAFT Version: v2.0-06

Liberty Alliance Project: DRAFT Version: v2.0-06

Liberty ID-WSF Data Services Template Specification

<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element name="Queryltem" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:annotation>
<xs:documentation>
NOTE: The below two types (SelectType and SortType) must
be defined by the schema that includes this one.
</xs:documentation>
</xs:annotation>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element name="Sort" type="SortType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="includeCommonAttributes" type="xs:boolean" default="0"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="changedSince" type="xs:dateTime"/>
<xs:attribute name="count" type="xs:nonNegativelnteger"/>
<xs:attribute name="offset" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" type="IDType"/>
<xs:attribute name="setReq">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Static"/>
<xs:enumeration value="DeleteSet"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
</xs:complexType>
<xs:element name="QueryResponse" type="QueryResponseType"/>
<xs:complexType name="QueryResponseType">
<xs:sequence>
<xs:element ref="Status"/>
<xs:element name="Data" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
<xs:attribute name="notSorted">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Now"/>
<xs:enumeration value="Never"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute ref="changeFormat"/>
<xs:attribute name="remaining" type="xs:integer"/>
<xs:attribute name="nextOffset" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" type="IDType"/>
</xs:complexType>
</xs:element>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>

Liberty Alliance Project: Confidential

63

Liberty Alliance Project: DRAFT Version
Liberty ID-WSF Data Services Template Specification

<l-- Modifying Data -->
<xs:element name="Modify" type="ModifyType"/>
<xs:complexType name="ModifyType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element name="Modification" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:annotation>
<xs:documentation>
NOTE: The below SelectType must be defined by
the schema that includes this one.
</xs:documentation>
</xs:annotation>
<xs:element name="Select" type="SelectType" minOccurs="0"/>
<xs:element name="NewData" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="notChangedSince" type="xs:dateTime"/>
<xs:attribute name="overrideAllowed" type="xs:boolean" default="0"/>
</xs:complexType>
</xs:element>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemID" type="IDType"/>
</xs:complexType>
<xs:element name="ModifyResponse" type="ResponseType"/>
<xs:complexType name="ResponseType">
<xs:sequence>
<xs:element ref="Status"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>
<l-- Subscribing notifications and modifying, renewing and deleting existing notifications -->
<xs:element name="Subscribe" type="SubscribeType"/>
<xs:complexType name="SubscribeType">
<xs:sequence>
<xs:group ref="ResourcelDGroup" minOccurs="0"/>
<xs:element ref="Subscription" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:|D"/>
<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="returnCurrentValues" type="xs:boolean" default="1"/>
</xs:complexType>
<xs:element name="SubscribeResponse" type="SubscribeResponseType"/>
<xs:complexType name="SubscribeResponseType">
<xs:sequence>
<xs:element ref="Status"/>
<xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>

Liberty Alliance Project: Confidential

64

1 v2.0-06

Liberty Alliance Project:

Liberty ID-WSF Data Services Template Specification

<l-- Query subscriptions -->
<xs:element name="QuerySubscriptions" type="QuerySubscriptionsType"/>
<xs:complexType name="QuerySubscriptionsType">

<Xs:.sequence>

<xs:group ref="ResourcelDGroup" minOccurs="0"/>

<Ixs:sequence>

<xs:attribute name="'

'id" type="xs:ID"/>

<xs:attribute name="itemID" type="IDType"/>

</xs:complexType>

<xs:element name="Subscriptions" type="SubscriptionsType"/>
<xs:complexType name="SubscriptionsType">

<Xs:.sequence>

<xs:element ref="Status"/>
<xs:element ref="Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="
<xs:attribute name="

</xs:complexType>

'id" type="xs:ID"/>
'itemIDRef" type="IDReferenceType"/>

<!l-- Subscription Element -->
<xs:element name="Subscription">

<xs:complexType>
<xs:sequence>

<xs:annotation>
<xs:documentation>
NOTE: The SelectType, TypeType, and TriggerType below
must be defined by the schema that includes this one.
</xs:documentation>
</xs:annotation>

<xs:element
<xs:element
<xs:element
<xs:element
<xs:.element
<xs:element
<xs:element
</xs:sequence>

name="Select" type="SelectType" minOccurs="0"/>

ref="ChangeFormat" minOccurs="0" maxOccurs="2"/>

name="NotifyTo" type="sb20:ServicelnstanceUpdateType"/>
name="NotifyEndedTo" type="sb20: ServicelnstanceUpdateType" minOccurs="0"/>
name="Type" type="TypeType" minOccurs="0"/>

name="Trigger" type="TriggerType" minOccurs="0"/>

ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

<xs:attribute name="starts" type="xs:dateTime"/>
<xs:attribute name="expires" type="xs:dateTime"/>
<xs:attribute name="duration" type="xs:duration"/>
<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="invokelD" type="IDType"/>
<xs:attribute name="subscriptionID" type="IDType"/>
<xs:attribute name="includeData" default="Yes">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
<xs:enumeration value="YesWithCommonAttributes"/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>
<Ixs:complexType>
</xs:element>

<l-- Sending Notifications and Notifying about subscriptions which have ended-->
<xs:element name="Notify" type="NotifyEndedType"/>

<xs:element name="NotifyResponse" type="NotifyEndedResponseType"/>
<xs:element name="Ended" type="NotifyEndedType"/>

<xs:element name="EndedResponse" type="NotifyEndedResponseType"/>
<xs:complexType name="NotifyEndedType">

<Xs:sequence>

<xs:element ref="Notification" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="

id" type="xs:ID"/>

Liberty Alliance Project: Confidential

65

DRAFT Version: v2.0-06

Liberty Alliance Project:
Liberty ID-WSF Data Services Template Specification

<xs:attribute name="itemID" type="IDType"/>
<xs:attribute name="timeStamp" type="xs:dateTime"/>

</xs:complexType>

<xs:complexType name="NotifyEndedResponseType">

<Xxs:.sequence>

<xs:element ref="Status"/>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="itemIDRef" type="IDReferenceType"/>

</xs:complexType>

<!I-- Notification Element -->
<xs:element name="Notification">
<xs:complexType>
<xs:sequence>
<xs:element name="Data" minOccurs="0">
<xs:complexType>
<xs:sequence>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>

<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute

name="invokelD" type="IDType"/>
name="subscriptionID" type="IDType" use="required"/>
ref="changeFormat"/>

name="expires" type="xs:dateTime"/>

name="duration" type="xs:duration"/>
name="endReason" type="xs:anyURI"/>

</xs:complexType>

</xs:element>
</xs:schema>

Liberty Alliance Project: Confidential

66

DRAFT Version: v2.0-06

2866

2867
2868
2869
2870

2871
2872
2873

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

8. Checklist for Service Specifications

The following table provides a checklist of issues which should be addressed by individual service type specifications.
Such specifications should always state which optional features of the DST they support, in addition to defining more
general things such as discovery option keywords an@é¢leetType XML type used by the service type. A service
specification should complete this table with the specific values and statements required by the specification.

For optional features, the language specified[RFC2119]MUST be used to define whether these features are

available for implementations and deployments. For example, specifying that a feature '"MAY’ be implemented by
a WSP means that WSPs may or may not support the feature, and that WSCs should be ready to handle both cases.

Liberty Alliance Project: Confidential

67

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

2874 Table 3. General Service Parameters (1/2)
Parameter \Value
<ServiceType> The<ServiceType> URN (seg/LibertyDisco]).

For exampleurn:liberty:id-sis-pp:2003-08

Discovery Options The discovery option keywords (sgkibertyDisco]) can either be listed with
semantics here, or via a reference to the correct chapter in the specification Please
note that the DST defines the following discovery option keywords and the gervice

specification must list which of these the service may use:

urn:liberty:dst:allPaths
urn:liberty:dst:can:extend
urn:liberty:dst:changeHistoryS upported
urn:liberty:dst:extend
urn:liberty:dst:fullXPath
urn:liberty:dst:multipleResou rces
urn:liberty:dst:multipleQueryltems
urn:liberty: dst: multipleModification
urn:liberty: dst:noModify
urn:liberty:dst:noPagination
urn:liberty:dst:noQuery
urn:liberty:dst:noQuerySubscriptions
urn:liberty:dst:noSorting

urn:liberty: dst:noStatic
urn:liberty:dst:noSubscribe

Data Schema A reference to the services full XML schema should be provided here.

SelectType Definition [The full type definition of thecSelect> element, or a reference to the definition
in the specification. For example:

<xs:simpleType name="SelectType">
<xs:restriction base="xs:string"/>
</xs:simpleType>

Semantics of the <Select> [The semantics of th&electType should be given or referenced here. Spme

element examples include: MUST support Restricted XPath (see chapter X.Y for the set
required), MAY extend the required set to cover all paths, MAY support full
XPATH.

Liberty Alliance Project: Confidential

68

2875

2876

Liberty Alliance Project:

DRAFT Version: v2.0-06

Liberty ID-WSF Data Services Template Specification

Table 4. General Service Parameters (2/2)

Parameter

Value

Element uniqueness

State here how elements with the same name are distinguished from
other. For example, thiel attribute MUST be used forAddressCard> ang
<MsgContact> elementsxml:lang andscript attributes used for localiz
elements.

19

Data Extension Supported

State here whether extension is supported and if so, describe this supf
reference to the specification chapter defining this can be given. E.g.

Multiple <Query> elements

IAre multiple<Query> elements supported?

Multiple <Queryltem> elements

IAre multiple <Queryltem> elements supported?

Support sorting

reference added to the definition of the available criterias.

SortType definition

could be:

<xs:complexType name="SortType">
<xs:complexContent>
<xs:restriction
base="EmptyType"/>
</xs:complexContent>
</xs:complexType>

SupportchangedSince

service SHOULD supporthangedSince)

Supported formats

If the changedSince
available: ChangedElements , CurrentElements and All . The supported
formats MUST be listed here and possible default value MUST also be

here, if such is chosen.

Liberty Alliance Project: Confidential

69

ort.

each

d

A
New

elements and discovery option keywords MAY be defined, see chapter Y.X for

more details.
Table 5. Query Parameters (1/2)
Parameter \Value
Support querying Some services or implementations may or may not support querying data. This
should be stated here. E.g. an implementation SHOULD support querying|data.

Is sorting supported? If it is, the sorting criteria must be specified here or a

The full type definition of the<Sort> element, or a reference to the definitjon.
E.g. when sorting is not supported the type definition using Liberty utility schema

State here whether thehangedSince attribute is supported. (for example, this

attribute is supported, there a three different formats

stated

2877

2878

Liberty Alliance Project:

DRAFT Version: v2.0-06

Liberty ID-WSF Data Services Template Specification

Table 6. Query Parameters (2/2)

Parameter Value
Support includeCommon [State whether thincludeCommonAttributes attribute is supported. (MUST
Attributes be, or SHOULD be for example)

Support pagination

Some services or implementations may or may not support pagination
should be stated here. If the pagination is supported, it MUST be listed for
elements the pagination is supported. E.g. Animplementation SHOULD s

This
which
upport

pagination forxX> and<Y> elements and MAY support it for all other elements.

Support static sets

When pagination is supported, some services or implementations may

E.g. An implementation SHOULD support static sets for elemattand MAY]
support it for all other elements.

br may

not support static sets to handle concurrent access. This should be stated here. If
static sets are supported, it MUST be listed for which elements they are supported.

<Extension> in <Query>

purpose?

Is the<Extension> element inside theQuery> element used? If so, for what

Table 7. Modify Parameters

Parameter

Value

Support modification

should be stated here.

Some services or implementations may or may not support modificationg. This

Multiple <Modify> elements

If modifications are supported, are multipi®odify> elements supported?

Multiple <Modification>
ments

ele

If modifications are supported, are multipt®odification> elements su
ported?

(=)
T

Support partial success

or are only atomic modifications allowed?

If multiple <Modification> elements are supported, is partial success supported

SupportnotChangedSince

State here whether th@tChangedSince attribute is supported. (for examg
this service SHOULD suppornibtChangedSince)

el

<Extension> in <Modify>

Is the<Extension> element inside theModify> element used? If so, for what
purpose? For the purpose a reference to some other chapter can be given|

Liberty Alliance Project: Confidential

70

2879

Liberty Alliance Project:

DRAFT Version: v2.0-06

Liberty ID-WSF Data Services Template Specification

Table 8. Subscribe Parameters (1/2)

Parameter

Value

Support subscribing to natificatio

[@ome services or implementations may or may not support subscribing to
cations. This should be stated here. E.g. an implementation SHOULD s
subscribing to notifications.

notifi-
upport

Use of the<Subscribe> elemen
for modifying and renewing su
scriptions.

The <Subscribe> element may be used for subscribing notifications, reng
bubscriptions, canceling subscriptions and modifying existing subscriptio
service specification may state that modifying and renewing are not suppg
so, it must be stated here. E.g. Modifying existing subscriptions MUST N(
supported, but renewing MUST be supported.

wing
ns. A
rted, if
DT be

Multiple <Subscribe> elements

If subscriptions are supported, are multipleubscribe> elements supported

Multiple <Subscription> ele

ments

If subscriptions are supported, are multipl8ubscription> elements su

ported?

A=)
[

Use of the<NotifyEndedTo> ele

ment

If end notifications are used (see later table), a WSC may e.g. request tho
sent to a different end point than normal notifications and also request a V
use different credentials, when sending end notificationsi\iftifyEndedTo>
element is supported. The support of #MotifyEndedTo> element MUST b
stated here. E.g. Not applicable as end notifications are not used.

se to be
VSP to

e

TypeType definition

The full type definition of the<Type> element, or a reference to the definit
E.g. when theType> element is not used the type definition using Liberty ut
schema could be:

<xs:complexType name="TypeType">
<xs:complexContent>
<xs:restriction
base="EmptyType"/>
</xs:complexContent>
</xs:complexType>

on.
ility

and processing rules related to #Bype> element MUST be added here, if

element is used.

A reference to the right place in the service specification discussing the serFantics

he

Liberty Alliance Project: Confidential

71

2880

Liberty Alliance Project:

DRAFT Version: v2.0-0

Liberty ID-WSF Data Services Template Specification

6

Table 9. Subscribe Parameters (2/2)
Parameter \Value
TriggerType definition The full type definition of theTrigger> element, or a reference to the definit

E.g. when the<Trigger>
utility schema could be:

element is not used the type definition using Lib

<xs:complexType name="TriggerType">
<xs:complexContent>
<xs:restriction
base="EmptyType"/>
</xs:complexContent>
</xs:complexType>

and processing rules related to #ikigger> element MUST be added here

the element is used.

on.
erty

A reference to the right place in the service specification discussing the semantics

A

Start of a subscription

Usually a subscription is valid after it has been created, but if supported, 3
may request that a subscription is valid only after a specific time usirgythe
attribute. It MUST be specified here, is thearts attribute supported or n
E.g. Thestarts attribute MUST NOT be used.

2 WSC

Subscription expiration

Usually subscriptions expire after a certain time, but a service specifi
may also specify e.g. that subscription expiration is not used and WSC
cancel subscriptions after they are not needed. It MUST be specified h
subscriptions expire or not. E.g. Subscription expiration MUST be used.

cation
5 must
ere, do

Use ofexpires andduration

tributes

a

—

{Two different attributesgexpires

and duration , are defined to be used
a WSC to specify the requested lifetime of a subscription and by a W,
communication the actual lifetime of a subscription. A service specifig
MUST state are both or only either of them used, if subscription expirat
used. E.g. Botlexpires andduration MAY be used.

by

SP to
ation
on is

Supportexpires==starts

Is it allowed to specify same time both for thiarts and theexpires attribute
to request one notification message at a specified time. E.g. same value |
used both for thatarts and theexpires attribute.

D

VIAY be

Support zeraluration

Is it allowed to specify theluration to have a zero value to have a subscrig
valid only for one natification. E.g. zero value for MUST NOT be used fo
duration _attribute.

tion
r the

<Extension> in <Subscribe>

Is the<Extension> element inside theSubscribe> element used? If so, f

or

what purpose? For the purpose a reference to some other chapter can be

given.

Liberty Alliance Project: Confidential

72

2881

2882

2883

Liberty Alliance Project:

DRAFT Version: v2.0-0

Liberty ID-WSF Data Services Template Specification

6

xisting

r can be

Table 10. QuerySubscriptions Parameters

Parameter \Value
Support querying existing subscifgeme services or implementations may or may not support querying e
tions subscriptions. This should be stated here. E.g. MUST NOT be supported.
Multiple <QuerySubscriptions> If subscriptions are supported, are multigl@uerySubscriptions> elements
elements supported?
<Extension> in <QuerySubscriptigisthe<Extension> element inside theQuerySubscriptions> element used?

If so, for what purpose? For the purpose a reference to some other chapte

given.

Table 11. Notify Parameters

Parameter

Value

Support notifications

Some services or implementations may or may not support notifications
should be stated here. E.g. an implementation SHOULD support notificati

This
NsS.

Are notifications acknowledged

Some services or implementations may or may not support acknowledging
cations usingNotifyResponse> . This should be stated here. E.g. Notificat
MUST BE acknowledge.

notifi-
ons

<Extension> in <Notify>

Is the<Extension> element inside theNotify> element used? If so, for wk

purpose? For the purpose a reference to some other chapter can be given|

at

Table 12. EndNotify Parameters

Parameter

Value

Support end notifications

Some services or implementations may or may not support end notification
should be stated here. E.g. MUST NOT be supported.

s. This

Are end notifications acknowledg8dme services or implementations may or may not support acknowledgi

notifications using<EndedResponse> .
notifications MUST BE acknowledge.

This should be stated here. E.g.

ng end
End

<Extension> in <Ended>

Is the<Extension> element inside theEnded> element used? If so, for wk

at

purpose? For the purpose a reference to some other chapter can be given|

Liberty Alliance Project: Confidential

73

2884
2885

2886
2887

2888
2889

2890
2891

2892
2893

2894
2895

2896
2897

2898
2899

2900
2901

2902
2903
2904

2905
2906

2907
2908
2909

2910

2911
2912

2913
2914

Liberty Alliance Project: DRAFT Version: v2.0-06
Liberty ID-WSF Data Services Template Specification

References

Normative

[LibertyDisco] Beatty, John, Hodges, Jeff, Sergent, Jonathan, eds. "Liberty ID-WSF Discovery Service Specification,"
Version 2.0-02, Liberty Alliance Project (24 Nov 2004http://www.projectliberty.org/specs

[LibertyMetadata] Davis, Peter, eds. "Liberty Metadata Description and Discovery Specification,” Version 2.0-02,
Liberty Alliance Project (25 November 2004)ttp://www.projectliberty.org/specs

[LibertySOAPBInding] Hodges, Jeff, Kemp, John, Aarts, Robert, eds. " Liberty ID-WSF SOAP Binding Specification
," Version 2.0-01, Liberty Alliance Project (22 November 2004}tp://www.projectliberty.org/specs

[LibertyPAOS] Aarts, Robert, eds. "Liberty Reverse HTTP Binding for SOAP Specification,” Version 2.0-01, Liberty
Alliance Project (22 November 2004)ttp://www.projectliberty.org/specs

[Libertylnteract] Aarts, Robert, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0-01, Liberty
Alliance Project (22 November 200M)ttp://www.projectliberty.org/specs

[LibertySecMech] Ellison, Gary, eds. "Liberty ID-WSF Security Mechanisms," Version 1.1, Liberty Alliance Project
(18 April 2004).http://www.projectliberty.org/specs

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary," Version 1.3-errata-v1.0, Liberty Alliance Project
(12 Aug 2004).http://mww.projectliberty.org/specs

[LibertyReg] Kemp, John, eds. "Liberty Enumeration Registry Governance," Version 1.0, Liberty Alliance Project (12
November 2003)http://www.projectliberty.org/specs

[Schemal] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (May
2002). "XML Schema Part 1: Structures," Recommendation, World Wide Web Consortium
http://www.w3.org/TR/xmlschema-1/

[RFC2119] Bradner, S., eds. "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, The Internet
Engineering Task Force (March 1997Mttp://www.ietf.org/rfc/rfc2119.t{March 1997].

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C.M., Maler, Eve, eds. (Oct 2000). "Extensible
Markup Language (XML) 1.0 (Second Edition)," Recommendation, World Wide Web Consortium
http://www.w3.0rg/TR/2000/REC-xmI-20001006

Informative

[LibertylDPP] Kellomaki, Sampo, eds. "Liberty Identity Personal Profile Service Specification," Version 1.0, Liberty
Alliance Project (12 November 2003)ttp://www.projectliberty.org/specs

[XMLDsig] Eastlake, Donald, Reagle, Joseph, Solo, David, eds. (12 Feb 2002). "XML-Signature Syntax and
Processing," Recommendation, World Wide Web Consorthitp://www.w3.org/TR/xmldsig-core

Liberty Alliance Project: Confidential

74

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.w3.org/TR/xmlschema-1/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.projectliberty.org/specs
http://www.w3.org/TR/xmldsig-core

	Liberty ID-WSF Data Services Template Specification
	4 Dec 2004 Draft v2.0-06 Liberty Alliance
	Overview
	Data Model
	Message Interface
	Querying Data
	Modifying Data
	Subscriptions and Notifications
	The Schema for the DST Protocols
	Checklist for Service Specifications
	References

	
	Liberty Alliance Title Page

