
 1
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

A comparative analysis of WS-C/WS-Tx and OASIS BTP

Mark Little, Arjuna Technologies Ltd
Thomas J Freund, IBM

October 7, 2003

Up to August 2003 there were two contenders for the Web services
transaction space: OASIS Business Transactions Protocol (BTP),
and the Web Services Transactions (WS-Tx) specification. There
have been several subjective articles and comments comparing
BTP to WS-Tx, attempting to show that BTP can do everything WS-
Tx can and ignoring the important differences that exist. This article
will try to give an objective comparison of these two specifications
and show how they both attempt to address the problems of
running transactions with Web services. At the end of the article it
should be apparent how and why WS-Tx and BTP are different,
while at the same time illustrating where they do have some
commonality.

Most workflow and business-to-business collaborative applications require
transactional support in order to reach a mutually-agreed outcome. Transactional
support ensures this outcome is observed consistently across all of the tasks
within the application that comprises the business activity. The results of a task
are typically made available before the overall business application or activity
completes. For example, an airline reservation system may reserve a seat on a
flight for an individual for a specific period of time, but if the individual does not
confirm the seat within that period, it will be reclaimed for another passenger.
Thus it is difficult, if not impossible, to incorporate traditional transaction
architectures within such environments. Furthermore, most collaborative
business process management systems support complex, long-running
processes where undoing tasks which have already completed may be
necessary in order to effect recovery, or to choose another acceptable execution
path in the process.

Web services are specifically about fostering systems interoperability. This
presents some interesting issues from a transaction management point of view,
particularly the fact that the Web services architecture is deliberately not
prescriptive about what happens behind service implementations: Web services
are only concerned with the transfer of structured data between parties, plus any
meta-level information to safeguard such transfers (for example, by encrypting or
digitally signing messages) – yet it is behind a service implementation that you
find traditional transaction processing architectures supporting business
activities.

 2
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

However, Web services also offer the possibility of a straightforward solution to a
very important transaction problem: interoperability. Ever since transaction
processing began, there has been a variety of transaction protocol standards
(such as X/Open and the OTS, see Resources) and vendor-specific protocols,
with many corresponding implementations. Interoperability between these
various protocols has always proved problematic and there has been limited
success. Web services offer a solution to this problem.

Thus there is a paradox: Web services provide a service-oriented, loosely-
coupled, and potentially asynchronous means of propagating information
between parties (see Resources for WS-Security and BTP references), while the
underlying services use traditional transaction processing infrastructures.
Furthermore, the fact that transactions in back-end systems are constructed with
ACID properties can potentially lead to problems when composing business
activities from these services/resources, since it presents opportunities to those
parties to lock resources and prevent transactions from making progress. Thus if
transactions are to be supported in the Web services architecture, then it is clear
that some re-addressing of the problem is required.

In 2001, a consortium of companies including Hewlett-Packard, Oracle and BEA
began work on the Organization for Advance Structured Information Systems
(OASIS) Business Transaction Protocol (BTP), which was aimed at business-to-
business transactions in loosely-coupled domains such as Web services. By April
2002 it had reached the point of a committee specification.

However, others in the industry, including IBM, Microsoft, and BEA released their
own specifications: Web Services Coordination (WS-C) and Web Services
Transactions (WS-T) (see Resources for appropriate references).
Although we'll examine this in more detail later, they key differences between
these specifications can be roughly categorized as follows:

• BTP is not specifically about transactions for Web services – the intention
was that it could be used in other environments. As such, BTP defines the
transactional XML protocol and must specify all of the service
dependencies within the specification. WS-C and WS-Tx are specifically
for the Web services environment and hence build on the basic definition
of a Web services infrastructure.

• The foundations of WS-Tx are based on traditional transaction
infrastructures, where there is a strong separation between the functional
aspects of business logic and the non-functional aspects of using
transactions within an application. BTP essentially started from scratch
and requires business-level decisions to be incorporated within the
transaction infrastructure.

 3
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

In this paper we'll give an objective analysis of these two
transaction protocols and compare and contrast the
approaches they have taken. Because there are a
number of good texts available on OASIS BTP (see
Resources for some examples) we will not spend as
much time describing that protocol as we will for WS-C
and WS-Tx where less information is currently available.

Overview

Distributed systems pose reliability problems not
frequently encountered in centralized systems. A
distributed system consisting of a number of computers
connected by a network can be subject to independent
failure of any of its components, such as the computers
themselves, network links, operating systems, or
individual applications, and activities may take an indeterminate duration to
execute. Decentralization allows parts of the system to fail while other parts
remain functioning, which leads to the possibility of abnormal behavior of
executing applications.

Consider the case of a distributed system where the individual computers provide
a selection of useful services which can be utilized by an application. It is natural
that an application that uses a collection of these services requires that they
behave consistently, even in the presence of failures. A very simple consistency
requirement is that of failure atomicity: the application either terminates normally,
producing the intended results, or is aborted, producing no results at all. In the
case of an abort, how the state of the system is restored to some predefined
state is typically an implementation choice. This failure atomicity property is
supported by traditional transaction processing systems through atomic
transactions.

A transaction can be terminated in two ways: committed or aborted (cancelled).
When a transaction is committed, all changes made within it are made durable
(forced on to stable storage such as disk). When a transaction is aborted, all
changes made during the lifetime of the transaction are undone. Interoperability
of existing transaction processing systems is an important part of Web services
transactions -- such systems already form the backbone of enterprise level
applications and will continue to do so for the Web services equivalent. Business-
to-business activities will typically involve back-end transaction processing
systems either directly or indirectly, and being able to tie together these
environments will be the key to the successful take-up of Web services
transactions.

Traditional transaction systems are typically referred to as ACID transactions. An
ACID transaction has the following properties:

Specification
version.
Note that at the time of
writing we are
comparing the BTP 1.0
committee
specification with the
preliminary version of
the WS-C/Tx
specifications. The
latter specifications
have solicited industry
feedback and may
undergo additional
change if warranted.

 4
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

• Atomicity: The transaction completes successfully (commits), or if it fails
(aborts), all of its effects are undone.

• Consistency: Transactions produce consistent results and preserve
application-specific invariants.

• Isolation: Intermediate states produced while a transaction is executing
are not visible to other transactions. Furthermore transactions appear to
execute serially, even if they are actually executed concurrently. This is
typically achieved by locking resources for the duration of the transaction
so that they cannot be acquired in a conflicting manner by another
transaction.

• Durability: The effects of a committed transaction are never lost (except by
a catastrophic failure).

Traditional transaction systems use a two-phase protocol to achieve atomicity
between participants, as illustrated in Figure 1. During the first (preparation)
phase, an individual participant must make durable any state changes that
occurred during the scope of the transaction, such that these changes can either
be rolled back or committed later once the transaction outcome has been
determined. Assuming no failures occurred during the first phase, in the second
(commitment) phase participants may "overwrite" the original state with the state
made durable during the first phase.

Figure 1. Two-phase commit protocol.

In order to guarantee consensus, two-phase commit is necessarily a blocking
protocol: after returning the first phase response, each participant which returned
a commit response must remain blocked until it has received the coordinator’s
phase 2 message. Until they receive this message, any resources used by the
participant are unavailable for use by other transactions, since to do so may
result in non-ACID behavior. If the coordinator fails before delivery of the second
phase message, these resources remain blocked until it recovers.

 5
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Although most classical transaction systems are implementations of the ACID
protocol, the various properties of an ACID transaction can be relaxed to provide
what are typically referred to as extended transactions (take a look at the OMG
Additional Structuring Mechanisms in Resources); for example, an extended
transaction model may relax atomicity to allow partial sets of participants to
commit or abort, or it may relax isolation to allow concurrent users to observe
partial results. The "classic" ACID protocol can be considered to be a well-
formed, two-phase protocol in this spectrum of protocols. As you will see later,
other protocols, such as BTP cohesions and WS-Tx Business Activities, fall into
the spectrum with varying degrees associated with each of the functionalities.

Composing certain activities from long-running ACID transactions can reduce the
amount of concurrency within an application or (in the event of failures) require
work to be performed again. For example, there are certain classes of application
where it is known that resources acquired within a transaction can be released
early, rather than having to wait until the transaction terminates; in the event of
the transaction cancelling, however, certain activities may be necessary to
restore the system to a consistent state (perhaps performing compensation or
counter-effects). Such compensation and fault-handling activities (which may
perform forward or backward recovery) will typically be application-specific, may
not be necessary at all, or may be more efficiently dealt with by the application.
Thus an extended transaction model is more appropriate for long-duration
interactions.

Figure 2. Travel arrangement scenario.

For example, take the relatively simple scenario of arranging travel and
accommodation for a conference. In particular, the attendee will require a flight to
the city where the conference is being held, a room reservation at a hotel, and
possibly a rental car for the duration of the conference.

While locating flight, hotel and car rental options you need to ensure likely
options can be reserved as you assemble the required set of reservations

 6
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

required for the trip as a whole. As well as considering the needs of the
conference attendee, service providers also need to have some autonomy and
maintain control of their own resources (flight, room, and car rental reservations).
The elements required for the booking are interrelated within this domain and yet
they are not necessarily pre-determined. Obviously without a flight it makes no
sense to book the hotel or to rent a car unless the conference were local, but in
other circumstances it may make sense to book the flight and hotel, but if the
hotel booking you make is at the same hotel as the conference, it may be
possible to do without the car rental.

You may also want to keep your options open by reserving a number of flights
while looking for other more direct travel options or other convenient hotels. The
customer solicits multiple quotes to determine the lowest-cost supplier.
Therefore, conducting the entire travel arrangements within a single classic
(ACID) transaction is inappropriate, since in that situation either all of the work
occurs or none occurs, which is inappropriate given the travel agent's
requirements. With traditional ACID transactions, it would not be possible to have
the partial outcomes (relaxed atomicity) that might be required if visiting multiple
flight booking services, for example.

Functionality of Web services transactions

The fundamental question addressed in this section is what properties must a
transaction model possess in order to support business-to-business interactions?
To begin to answer that, you might first need to understand what is meant by a
business transaction.

A business relationship is any distributed state maintained by two or more
parties, which is subject to some contractual constraints previously agreed to by
those parties. A business transaction can therefore be considered as a
consistent change in the state of a business relationship between parties. Each
party in a business transaction holds its own application state corresponding to
the business relationship with other parties in that transaction. During the course
of a business transaction, this state may change.

In the Web services domain, information about business transactions is
communicated in XML documents. However, how those documents are
exchanged by the different parties involved (such as email or HTTP) may be a
function of the environment, type of business relationship, or other business or
logistical factors.

The following sections will consider the characteristics typical for extended
transactions and then talk about the specific requirements for business
transactions.

 7
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Characteristics of extended transactions

An activity is a unit of (distributed) work that may, or may not be transactional.
During its lifetime an activity may have transactional and non-transactional
periods. Every entity including other activities can be parts of an activity, although
an activity need not be composed of other activities. An activity is created, made
to run, and then completed. The result of a completed activity is its outcome,
which can be used to determine subsequent flow of control to other activities.
A task is a short-duration unit of work that may be better suited to more
traditional transactional semantics. Each task may execute on different,
distributed systems or domains, and the internal composition of a task may
involve many different machines/domains or sub-tasks. How tasks are
implemented to perform the necessary work is typically unimportant to the
application.

The structuring mechanisms available within traditional transaction systems are
sequential and concurrent composition of transactions. These mechanisms are
sufficient if an application function can be represented as a single top-level
transaction. Frequently with Web services this is not the case. Top-level
transactions are most suitably viewed as short-lived entities (tasks), performing
stable state changes to the system; they are less well-suited for structuring long-
lived application functions (such as running for minutes, hours, days, …).
Activities implemented using traditional systems may reduce the concurrency in
the system to an unacceptable level by holding on to locks for a long time;
further, if such a transaction rolls back, much valuable work already performed
could be undone.

Activities can be structured as many independent tasks to form an overall
application. This structuring allows an activity to acquire and use resources for
only the required duration within this long-running transactional activity. This is
illustrated in Figure 3, where an activity (shown by the dotted ellipse) has been
split into many different, coordinated, tasks. Assume that the application activity
is concerned with booking a taxi (t1), reserving a table at a restaurant (t2),
reserving a seat at the theatre (t3), and then booking a room at a hotel (t4), and
so on. If all of these operations were performed as a single transaction then
resources acquired during t1 would not be released until the top-level transaction
has terminated. If subsequent activities t2, t3 etc. do not require those resources,
then they will be needlessly unavailable to other clients.

 8
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 3. An example of a logical long-running "transaction", without
failure.

In addition, task failures do not necessarily affect the overall activity, unlike
traditional ACID transactions. Such long-running applications are generally
constructed such that some form of (application-specific) compensation may be
required to attempt to return the state of the system to (application-specific)
consistency. For example, assume that t4 aborts (Figure 4). Further assume that
the activity can continue to make forward progress, but in order to do so must
now undo some state changes made prior to the start of t4 (by t1, t2 or t3).
Therefore, new tasks are started; tc1 which is a compensation task that will
attempt to undo state changes performed, by say t2, and t3, which will continue
the application once tc1 has completed. tc5’ and tc6’ are new tasks that continue
after compensation; for example, if it is not possible to reserve the theater, a
ticket at the cinema might be an alternative event to go along with the previously
booked restaurant and hotel. Obviously other forms of transaction composition
are possible.

Figure 4. An example of a logical long-running "transaction", with failure.

There are several ways in which some or all of the application requirements
outlined above could be met. However, it is unrealistic to believe that the "one-
size fits all" paradigm will suffice, in other words, a single approach to extended
transactions is unlikely to be sufficient for all (or even the majority of)
applications. Whereas in case of the last example, a transactional workflow
system with scripting facilities for expressing the composition of the activity with
compensation (a workflow) may be the most suitable approach; a less elaborate
solution might be desirable for the first three examples.

 9
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Requirements

As Web Services have evolved as a means to integrate processes and
applications at an inter-enterprise level, traditional transaction semantics and
protocols have proven to be inappropriate for the reasons mentioned previously.
Web services-based transactions differ from traditional transactions in that they
execute over long periods, they require commitments to the transaction to be
negotiated, and isolation levels have to be relaxed.

Since business relationships imply a level of value to the parties associated by
those relationships, achieving some level of consensus between these parties is
important. Not all participants within a particular business transaction have to see
the same outcome; a specific business transaction may possess multiple
different consensus groups, with participants in each group observing different
outcomes. In addition some consensus groups may allow the atomicity within a
specific transaction to be relaxed, allowing subsets of participants to receive
different outcomes. This flexibility in the participant list of a group is an important
difference between these kinds of extended transactions and traditional
transaction systems.

Furthermore, it should be possible for a participant to exit a consensus group
when required. There are a number of reasons why a participant may no longer
wish to be involved in the consensus decision; for example, the work it has
performed can complete safely irrespective of the final outcome of the consensus
group, or it may be necessary for a separate task (a different service or domain)
to perform a counter-effect in the event the consensus group cancels the work.

Consider the situation depicted in Figure 5, where there is a transaction
coordinator and three participants. Assume that each of these participants is on a
different machine to the coordinator and each other. Each of the lines connecting
the coordinator to the participants also represents the invocations from the
coordinator to the participants and vice versa:

• Enroll a participant in the transaction.
• Execute the coordinator termination protocol.

 10
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 5. A distributed transaction.

As far as a coordinator is concerned, it does not matter what the participant
implementation is -- although one participant may interact with a database to
commit the transaction, another may just as readily be responsible for forwarding
the coordinator's messages to a number of databases, essentially acting as a
coordinator itself.

This technique of using proxy coordinators (or subordinate/sub-coordinators) is
known as interposition. Each domain (machine) that imports a transaction
context may create a subordinate coordinator that enrolls with the imported
coordinator as though it were a participant. Interposition is important for a
number of reasons, including performance optimization and security. Each
subordinate coordinator may represent a separate domain that is responsible for
its own security, protocol bridging, etc.

Consensus groups achieve consistent outcomes among participants, but are only
part of the picture. Often in business-to-business relationships there are
hierarchies of these groups (scopes of work), with parent and child relationships
existing between them. Typically the work performed by a child is provisional on
the successful completion of the parent; for example, the parent scope can
perform a counter-effect for the completed child.

It is important to realize that parent-child (activity-task) scopes are not equivalent
to interposition. In an interposed hierarchy, sub-nodes complete only when
instructed to by the completion of their superior nodes. In a nested scope
relationship (such as nested transactions), the sub-scopes can complete
independently of their parents and may then impose compensation requirements
on the parent.

In addition to understanding the outcomes, a participant within a business
transaction may need to support provisional or tentative state changes during the
course of the transaction. Such parties must also support the completion of a
business transaction either through confirmation (final effect) or cancellation

 11
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

(counter-effect). In general, what it means to confirm or cancel work done within
a business transaction will be for the participant to determine.

For example, an application may choose to perform changes as provisional effect
and make them visible to other business transactions. It may store necessary
information to undo these changes at the same time. On confirmation, it may
simply discard this undo changes or on cancellation, it may apply these undo
changes. An application can employ such a compensation-based approach or
take a conventional roll back approach, for example.

Finally, it’s also important for any Web services transactions protocol to have
interoperability with existing transaction processing systems. Such systems
already form the backbone of enterprise-level applications and will continue to do
so for the Web services equivalent.

In the following sections we will discuss whether and how both BTP and WS-Tx
have addressed these issues. However, before we do so, it is important to
understand that both WS-Tx and BTP allow a distinction to be made between a
transactional service and the participants that are controlled by the transaction,
as illustrated in Figure 6.

Figure 6. Services and participants.

• Transactional service: This service enables the application to conduct

work within the scope of a business transaction. The outcome of this work

 12
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

is not finalized until the application instructs the transaction service to
either commit or abort. An example of such an object would be a Web
service that allows users to place items into a shopping basket, as shown
in Figure 7; only if the user decides to confirm the purchase and the
application then commits the transaction does the purchase of the items in
the basket occur. The responsibility for orchestrating the outcome across
the tasks/services that comprise the work is removed from the application
and placed under the control to the transaction service.

• Transactional participant: This is the entity that controls the outcome of the

work performed by the transactional object. For example, if the online
shopping service uses a database to store information on the items in the
basket, it will typically access this information via a driver. SQL statements
will be sent to the database for processing via the driver, but these
statements will be tentative and only commit when (and if) the transaction
does so. In order to do this, the driver/database will associate a participant
with the transaction and this will inform the database of the outcome. Note
that in the case of interposition, this participant may actually be a
coordinator as you saw earlier.

Figure 7. Transactional Service and Participant.

Section summary

To summarize what we’ve discussed in the previous sections, the requirements
placed on the use of transactions in Web services mean that any Web services
transaction model should support the following functionality:

 13
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

• Relaxation of ACID properties in a structured, well-defined manner; strict
ACID properties, especially atomicity are not appropriate for all
applications. Many long-duration activities required are not atomic all-or-
nothing (see consensus groups). Likewise, often results of tasks are
exposed before the overall activity has terminated (relaxation of isolation).

• Flexible outcomes for consensus groups. For example, open-flat, where
the participants in a transaction are exposed to the business logic allowing
it to define the relationships of the individual units of work to the
transaction task; open-nested, where there are tasks within an activity
forming a parent-child relationship of consensus groups.

• Flexible participation in consensus groups; a task can leave an activity
(exit the group) prior to outcome processing if it decides it does not affect
that processing, in other words, it does not expose results or cause side-
effects.

• Activities and tasks should be defined as individual scopes (consensus
groups), with clearly-defined relationships between them so that the
service can also cleanly delineate responsibilities. Scopes allow the work
performed by services or a long-running activity to be clearly demarcated
by the application or the service. In addition, termination of scopes resides
in the domain of the application and it driven from top-down. This is
another important distinction between scopes and interposition, where a
participant (mapped to a scope, for example) may exit an activity
autonomously (in a bottom-up manner) and does not give the application
the control required to properly manage scopes.

The OASIS Business Transactions Protocol

BTP was the first cross-industry attempt to produce an XML standard for
business-to-business transactions. It is designed to support applications which
are disparate in time, location, and administration and thus require transactional
support beyond classical ACID transactions. It is a protocol for orchestrating
business processes between loosely-coupled software services to achieve
consistent outcomes from the participating business parties.

In BTP, the notion of consensus groups mentioned earlier is obtained through the
two transaction protocols that are defined, atoms and cohesions. Both of these
transaction types mandate a two-phase completion protocol to ensure atomicity
between (sub-sets of) participants (you’ll see what we mean by this soon). During
the first phase (prepare), an individual participant must make durable any state
changes that occurred within the scope of the transaction, such that those
changes can either be undone (cancelled) or made durable (confirmed) later
once consensus has been achieved.

Although BTP uses a two-phase protocol, there is no implication of ACID
semantics within the BTP. The completion protocol is only concerned with
achieving consensus. How participant implementations of the prepare, confirm,

 14
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

and cancel phases are provided is a back-end implementation decision. Issues to
do with consistency and isolation of data are also back-end choices and not
imposed or assumed by BTP; in fact it is not possible to infer from a participant
using BTP what back-end choices it has made; for example, there is no Policy
Framework such as in the WebServices (see Resources), where behavior is
described in policy assertion statements (allowing for interpretation and tooling).

This is good in so far that traditional ACID transactions are not suitable for all
types of Web services interactions. However, everything is left up to back-end
implementation choices and there is nothing in the protocol (implicit or explicit) to
allow a user to determine what choices have been made. Therefore, it is
impossible to reason about the ultimate correctness of a distributed application.
For example, if you wanted to use BTP for ACID transactions, then of course
services could use traditional XA resource managers, for example, wrapped by
BTP participants. Unfortunately, there is no way within the BTP for those services
to inform external users that this is what they have done so that they can safely
be used within the scope of a BTP "ACID" transaction.

Because the traditional two-phase algorithm does not impose any restrictions on
the time between executing the first and second phases, BTP took the approach
of using this to allow business-logic decisions to be inserted between the phases.
What this means is that users are required to drive the two phases explicitly in
what BTP terms an open-top completion protocol. The application has complete
control over when transactions prepare, and using whatever business logic is
required, later determine which transactions to confirm or cancel. Prepare
becomes an integral part of the service business logic.
This is a significant difference from traditional transaction
systems, where an application is only allowed to tell a
transaction to commit (confirm) or rollback (cancel); the
transaction coordinator then executes the entire two-
phase protocol before returning control (and the result)
to the application. Being able to control both phases
means that the participant and the service on whose
behalf it acts, must co-operate closely. The act of being
told to prepare by the coordinator is typically reflected by
the participant into a business-level decision, such as
reserving a quote for a flight. In a traditional transaction
system, the reservation would have occurred prior to the
commit protocol being executed, and informing the
participant to prepare essentially attempts to make that
reservation durable (such as turning the reservation into
a booking).

Transaction types

Before going into more detail on why open-top is important to BTP, let’s first
examine the transaction semantics that are supported within the protocol. BTP

Open flat
BTP's open top-
completion is what the
industry generals
terms Open-flat. The
term open-top implies
that there is a
hierarchy of scopes,
but in fact BTP does
not support nesting of
scopes, only
interposition, which as
we saw earlier, is not
the same.

 15
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

introduced two types of extended transactions, both using the open-top, two-
phase completion protocol:

• Atom: an atom is the typical way in which "transactional" work performed
on Web services is scoped. The outcome of an atom is guaranteed to be
atomic, such that all enlisted participants (acting on behalf of their
associated Web services) will see the same outcome, which will either be
to accept (confirm) the work or reject (cancel) it. Although at first glance it
may seem as though BTP atoms are equivalent to atomic transactions:
they are not. We will revisit this in a later section, but it is worth giving
some brief details here. BTP did not consider interoperability with existing
transaction systems as an important factor. The semantics for an atom
(isolation, durability etc.) are not as precisely-defined as those you can
expect from an atomic transaction.

• Cohesion: this type of transaction was introduced in order to relax
atomicity and allow for the selection of work to be confirmed or cancelled
based on higher-level business rules. Atoms are the typical participants
within a cohesion but, unlike an atom, a cohesion may give different
outcomes to its participants such that some of them may confirm while the
remainder cancel. In essence, the two-phase protocol for a cohesion is
parameterized to allow a user to specify precisely which participants
(either atoms or stand-alone participants) to prepare and which to cancel.
The strategy underpinning cohesions is that they better model long-
running business activities, where services enroll in atoms that represent
specific units of work, and as the business activity progresses it may
encounter conditions that allow it to cancel or prepare these units with the
caveat that it may be many hours or days before the cohesion arrives at
its ultimate decision and specifies its confirm-set: the set of participants
that it requires to confirm in order for it to successfully terminate the
business activity. Once the confirm-set has been determined, the
cohesion collapses down to being an atom: all members of the confirm-set
will see the same outcome. As we discussed earlier, this is precisely the
kind of weakening of consensus groups required from Web services
transactions.

At first glance it may appear that these two transaction models are distinct.
However, cohesions in effect present a superset functionality of atoms: if you
have a cohesion coordinator then you can use that same implementation to
provide support for atoms (though the inverse is not the case).

It is also important to understand that as with a traditional two-phase protocol,
there is no ordering implied by the registration of participants in a transaction
(atom or cohesion). Therefore, an implementation of a coordinator is free to
communicate with participants in any order it wants and any requirement on
ordering cannot be enforced within the BTP and so should be avoided by
applications or services.

 16
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Note that participants in atoms and cohesions are identical and can therefore be
enrolled in atoms or cohesions. The context information propagated to services
contains sufficient information for a participant to determine within the BTP
whether they have enlisted in an atom or a cohesion.

Interposition of coordinators is possible within BTP. Although not prevented in the
specification, mixing of the two transaction types in a transaction hierarchy would
be difficult to manage, simply because of the differences between atoms and
cohesions. In fact, although interposition of atoms is relatively straightforward to
reason about (after all, it’s similar to interposition in traditional transaction
systems), interposition of cohesive transaction coordinators is less
straightforward to understand and manage, simply because business-level
decisions play a prominent role in the way in which cohesions are terminated.
So, for example, if a root cohesion coordinator tells a subordinate cohesion
coordinator to confirm, does that mean that all of the enlisted participants with
that subordinate should also confirm? The answer may well depend upon which
other participants the root coordinator confirmed, but unfortunately this
information is not made available to subordinates within the standard protocol.
You saw earlier how interposition is an important requirement for Web services
transactions. However, we also discussed that the notion of parent-child
relationships (scopes) is important, especially when structuring large-scale
applications from disparate services and domains. Unfortunately BTP does not
support nested scopes (nested atoms or cohesions).

Open-top completion and business logic

As we discussed previously, a participant within a business transaction may need
to support provisional or tentative state changes during the course of the
transaction. Such parties must also support the completion of a business
transaction either through confirmation (final effect) or cancellation (counter-
effect). In general, what it means to confirm or cancel work done within a
business transaction will be for the participant to determine. As such, BTP does
not define how prepare, cancel, or confirm should be implemented. This is
important because BTP relaxes entirely the durability and isolation aspects of
traditional transactions, and this means that, unlike in a traditional transaction, it
is entirely possible for concurrent users to interfere or see partial results.
Enforcement of such policies is outside the scope of BTP and unfortunately, the
protocol does not give any support for standardized mechanisms to assist
developers and users.

Being able to control the time between the two phases of the termination protocol
is extremely important to BTP. Because there is no implied semantic on a
participant’s prepare, confirm, or cancel operations, they typically become part of
the business logic in BTP. When a participant is told to prepare in BTP it makes
sense for the participant to perform some business logic. Returning to our flight
reservation example: using the open-top completion protocol you can visit each

 17
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

flight reservation center within its own atom and ask for a quote; if you wish to
retain the quote until you have determined the best option, then you would
prepare the corresponding atom; this prepare would then need to understand the
semantics of the work you have performed (obtaining the quote) and translate
that into a tentative hold on the corresponding seat.

Although business-level semantics are not required to be associated with the
individual participant operations, the explicit control over the time between
phases is often cited as the main advantage of the BTP open-top approach. For
example, the application has time to choose between alternate tasks that have
been prepared before ultimately terminating the transaction. However, as you’ll
see later, this opening up of the two-phase protocol to allow application time to
be "injected" does not really work well in the Web services environment.

Qualifiers

An interesting approach taken by BTP to that of loosely-coupled domains and
long-running interactions was of introducing the notion of Qualifiers to the
protocol. A Qualifier can be thought of as a caveat to that aspect of the protocol
on which it is associated. Essentially a Qualifier is a way of providing additional
extended information within the protocol.

Although the BTP specification provided some standard Qualifier types (such as
timeouts for how long a participant is willing to remain in a prepared state), it is
possible to extend them and provide new implementations that are better suited
to the application or participant. Obviously any use or reliance on non-standard
Qualifiers will reduce application portability.

Unfortunately, although the concept underlying Qualifiers is sound, their
implementation with BTP is flawed. The main reason for this is that in some
cases the information contained within Qualifiers is not made available to the
entity that can best make use of it. For example, one of the standard Qualifiers in
BTP is used during the prepare phase and allows a participant to specify how
long it is willing (or able) to remain in a prepared state (and possibly what state it
will then transit to). This information is passed to the coordinator, but in reality it
is the application that requires it.

Protocol optimizations

There are several optimizations to the basic BTP protocol that are worth
considering, especially in light of the open-top completion protocol:

• Participant resignation: in a traditional two-phase commit protocol, in
addition to indicating success or failure during the preparation phase, a
participant can also return a read-only response; this indicates that it does
not control any work that has been modified during the course of the
transaction and therefore does not need to be informed of the transaction

 18
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

outcome. This can allow the two-phase protocol to complete quickly since
a second round of messages is not required. The equivalent of this in BTP
is for a participant to resign from the transaction (atom or cohesion) it was
enrolled in. Resignation can occur at any time up to the point where the
participant has prepared and is used by the participant to indicate that it
no longer has an interest in the outcome of the transaction.

• Autonomous participant decisions: In a traditional two-phase protocol a
participant enrolls with a transaction and waits for the termination protocol
before it either confirms or cancels. You saw earlier how, in order to
achieve consensus, it is necessarily a blocking protocol. Modern
transaction-processing systems have augmented two-phase commit with
heuristics, which allow prepared participants to make unilateral decisions
about whether they will commit or roll back. Obviously if a participant
makes a choice that turns out to be different to that taken by other
participants, non-atomic behavior occurs. BTP has its equivalent of
heuristics, allowing participants to make unilateral decisions as well.
However, unlike in other transaction implementations, the protocol allows
a participant to give the coordinator prior knowledge of what that decision
will be and when it will be taken. A participant may prepare and present
the coordinator with some caveats (the aforementioned Qualifiers) as to
how long it will remain in this state and into what state it will then migrate
(for example, "will remain prepared for 10 days and then will cancel the
seat reservation"). This information may then be used by the coordinator
to optimize message exchange. Although this might sound like a good
idea, as we mentioned earlier, the ideal end-point for this sort of
information is the application and not the transaction; unfortunately BTP
does not provide a means whereby the application can obtain this
information.

• Carrier optimizations: Typically a participant is enlisted with a BTP
transaction when a service invocation occurs. When the service request
completes, the response is sent back to the initiator of the request. In
some circumstances, it may be possible to compound many of the above
messages into a "one-shot" message. For example, the service invocation
may cause a state change to occur that means the participant can prepare
immediately after the invocation completes. Rather than have to wait for
an explicit coordinator message, BTP allows the enroll request and
statement of preparation to be compounded within the service response.
The receiver is then responsible for ensuring that this additional
information is forwarded to the coordinator. (Not necessarily a
straightforward operation.)

• One-phase: If an atom or cohesion coordinator has only a single
participant when it is told to confirm, then it can tell the participant to
confirm without having to previously prepare.

 19
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Web services and BTP

BTPs approach to Web services is also different to what you might expect. From
the outset, the technical committee decided that BTP should be useful outside of
Web services. As such, BTP is not Web services-specific; it does not leverage
the Web services architecture, contains no WSDL or carrier protocol binding.
What this means is that rather than place a requirement on a specific
mechanism, BTP chose to define a complete service stack within the transaction
protocol.

Unfortunately, mapping BTP into a specific deployment environment, such as
Web services, may mean that certain aspects of that stack are not necessary;
there is also the potential that the "native" functionality may even interfere with
the transaction protocol. For example, the one-shot optimization discussed
earlier is meant to allow multiple related BTP protocol messages to be sent back
to some end-point in a single carrier message. Most modern-day Web services
infrastructures already support this kind of optimization transparently (one-shot
requires support from the BTP infrastructure at both the sender and receiver).
Interestingly all that BTP mandates is the XML message set that is required to
conduct the protocol. How that message set is exchanged by the different parties
involved may be a function of the environment (such as email or HTTP), type of
business relationship, or other business or logistical factors. The specification
does define a binding to SOAP-over-HTTP, but this is not mandated. There is no
base interoperability definition for BTP (for the protocol behavior). It is merely a
standardization of message content and message sequences.

Example of a cohesive transaction

Let’s look at the travel agent scenario and see how
cohesions may be utilized, as illustrated in Figure 8. In this
example, the travel agent chooses to start a transaction and
book a flight to London. One flight option is direct on ALU
and the other has two legs and two different carriers ZA and
Xantas. Eventually the travel agent has to decide on one of
the flights -- either the direct ALU flight or the combined
Xantas/ZA flight. By getting commitments for both the ALU flight or the combined
Xantas/ZA flight, the travel agent can decide which to take knowing that they will
always get the flight they decide upon.

The travel agent
scenario.
This example is based
on that found in the
BTP Primer (see
Resources).

 20
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 8. Travel agent scenario setup for cohesions.

If you look at one individual invocation (shown in Figure 9) you can see how
commitments are made, managed, and coordinated toward termination. First the
travel agent creates a business transaction (Context) for the work it wants to
perform. It does this through a Composer (the BTP name for a cohesion
coordinator). The travel agent then makes the service requests to Xantas.com
ALU.com and ZA.com, also propagating the transaction details (Context).

Figure 9. Service invocations and context.

Xantas.com ALU.com and ZA.com (Participants) all agree to participate in the
transaction (Enroll). In this example Xantas also makes a commitment to the
transaction (Prepared) but ALU and ZA do not.

 21
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

As shown in Figure 10, based on the prices returned, the travel agent decides to
go ahead and book the two-legged flight offered by Xantas and ZA (Confirm
B,C). Because ALU never made a commitment to the business transaction
(Prepared), in other words, reserved seats; there is no need to cancel the ALU
flight.

Figure 10. Confirming flights.

Figure 11 shows that because the flight chosen involves two parties, Xantas and
ZA, the transaction the coordinator then asks each participant to make a
commitment with regard to the overall business transaction (Prepare). Because
Xantas has already made a commitment, the coordinator only needs to get a
commitment from ZA (Prepare).

Figure 11. Preparing the participants.

 22
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

The composer now has received positive commitments from Xantas.com and
ZA.com, the requested portions of the business transaction requested by the
travel agent. The composer therefore goes ahead and confirms the seat
reservations offered by ZA.com and Xantas.com, as shown in Figure 12.

Figure 12. Confirming a subset of participants in the cohesion.

If ALU had made a commitment (Prepared) then the composer would need to
explicitly cancel the seats reserved by ALU as part of the business transaction, at
the same time as confirming the ZA, Xantas flight. The composer finally confirms
the successful conclusion of the business transaction back to the travel agent
(Transaction Confirmed), as illustrated by Figure 13.

Figure 13. Confirming a subset of participants in the cohesion and
cancelling others.

 23
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

As you can see from this example, in BTP, because business logic is encoded
within the transaction protocol, it essentially means that a user has to be closely
tied to (or perhaps even be) the coordinator. Business information, such as the
ability for a participant to remain prepared (for example, hold onto a hotel room)
for a specific period of time is propagated from the participant to the coordinator,
but there is nothing within the protocol to allow this information to filter up to the
application/client where it really belongs.

In order to use cohesions it is also necessary for Web services to expose back-
end implementation choices about participants. As you saw, in order to
parameterize the two-phase completion protocol, the terminator of the cohesion
obviously needs to be able to say "prepare A and B and cancel C and D," where
A, B, C and D are participants that have been enrolled in the cohesion by
services (such as our flight reservation system). Naturally this is something that
programmers may not be comfortable with, and it goes against the Web services
orthodoxy.

Web Services Coordination and Transaction

This section will examine the overall model used by the Web Services
Coordination and Web Services Transactions specifications. This is important in
order to understand the differences between WS-C/WS-Tx and BTP.
Coordination is a requirement in a variety of different aspects of distributed
applications, such as workflow, security, atomic transactions, caching and
replication, security, auctioning, and business-to-business activities. For
example, coordination of multiple Web services in choreography may be required
to ensure the correct result of a series of operations comprising a single business
transaction.

Despite the fact that there are many different types of application that require
coordination, each use typically manifests as a different type of coordination
protocol. In the case of transactions, for example, BTP, Object Management
Group’s Object Transaction Service, Microsoft DTC are solutions to specific
problem domains and which are not applicable to others since they are based on
different architectural styles. Given the domain-specific nature of these
coordination protocols, it is unrealistic to provide a "universal" protocol without
jeopardizing efficiency and scalability.

Unlike BTP which ties coordination to transactions, the Web Services
Transactions protocol leverages a separate protocol aimed solely at outcome
determination/processing: Web Services Coordination. The fundamental idea
underpinning WS-Coordination is that there is a generic need for a coordination
infrastructure in a Web services environment. The WS-Coordination specification
defines a framework that allows different coordination protocols to be plugged-in
to coordinate work among clients, services, and participants, as shown in Figure
14.

 24
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 14. WS-Coordination architecture.

Note that the Control messages are shown separately only to illustrate the
specific interactions between client/coordinator and service/participant. These
messages are still Web services messages and hence flow using SOAP.

Both WS-C and WS-Tx are intended solely for the Web services environment
and as such leverage existing and evolving standards, such as WSDL, WS-
Addressing, Web Services Security, and WS-Policy (see Resources). This
focuses WS-C and WS-Tx to a WebServices environment and simplifies the
specifications and places them as a component in the Web Services architecture.
Any advances in performance optimizations for Web services infrastructures can
be automatically leveraged by these specifications.

The XML context

In order for coordination to span a distributed number of services/tasks, certain
information has to flow between the sites/domains involved in the application.
This is commonly referred to as the context and typically contains the following
information:

• An identifier which guarantees global uniqueness for an individual activity
(such an identifier can also be thought of as a correlation identifier, or a
value that is used to indicate that a task is part of the same work activity).

• The coordinator location or endpoint address so participants can be
enrolled.

 25
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 15. Services and context flow.

The context information is propagated to provide a flow of context information
between distributed execution environments, for example using SOAP header
information. This may occur transparently to the client and application services.
As has already been mentioned, the context is propagated as part of normal
message interchange within an application (for example, as an additional part of
the SOAP header).

An important difference between WS-Tx and BTP is that the former differentiates
between transactionality requirements and coordination by leveraging the WS-C
protocol, whereas the latter ties coordination to transactions. The following
section will examine WS-C in order to better understand the type of flexibility this
gives WS-Tx over other approaches.

Coordination protocol

Coordination is the act of one agent (the coordinator) disseminating
information to a number of participants to guarantee that all
participants obtain a specific message. A coordinator can also be a
participant, creating a tree of sub-coordinators or peer-coordinators
that cooperate to further propagate the result. Unlike BTP,
interposition is an integral part of the WS-C (and WS-T) models.

Context information flows implicitly (transparently to the application)
within normal messages sent to the participants. This information is
specific to the type of coordination being performed, for example to
identify the coordinator(s), the other participants in an activity,
recovery information in the event of a failure, etc. Furthermore, it may
be required that additional application-specific context information (for

 26
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

example, extra SOAP header information) flow to these participants
or the services which use them.

WS-Coordination defines a generic coordination framework that can
support arbitrary coordination protocols. It is extensible at the
coordinator level as well as at the level of the context. For example, a
coordinator that executes a three-phase commit protocol can be
easily plugged in to a WS-C implementation and the basic WS-C
context may be enhanced if necessary. The framework is useful for
propagating a range of context types including security, workflow, or
replication.

The WS-Coordination specification talks in terms of activities, which
are distributed units of work, involving one or more parties (which
may be services, components, or even objects). At this level, an
activity is minimally specified and is simply created, made to run, and
then completed.

Whatever coordination protocol is used, the same requirements are
present:

• Instantiation (or activation) of a new coordinator for the specific
coordination protocol, for a particular application instance

• Registration of participants with the coordinator, such that they
will receive that coordinator’s protocol messages during (some
part of) the application’s lifetime

• Propagation of contextual information between Web services
that comprise the application

• An entity to drive the coordination protocol through to
completion.

The first three of these points are directly the concern of WS-
Coordination while the fourth is defined in WS-T, usually the client
application that controls the application as a whole. These four WS-
Coordination roles and their interrelationships are shown in Figure 16.

 27
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 16. The WS-Coordination Infrastructure.

The WS-Coordination framework exposes an Activation Service which supports
the creation of coordinators for specific protocols and their associated contexts.
The process of invoking an activation service is illustrated as occurring
asynchronously, so the specification defines both the interface of the activation
service itself and that of the invoking service: the activation service can call back
to deliver the results of the activation, namely a context that identifies the
protocol type and coordinator location.

This asynchronous approach reduces the tight coupling
between end-points typically seen in other environments,
which has the advantage of improved fault-tolerance,
modularity, and deployment considerations. For
example, although a client may send a completion
message to a coordinator, it may make more sense for
the response to be sent to some other entity.

Once a coordinator has been instantiated and a
corresponding context created by the activation service,
a Registration Service is created and exposed. This

Interaction patterns.
WSDL allows for a
range of interaction
styles by specifying
the "variety" in WSDL
1.2. As such,
interaction patterns
other than the
asynchronous style
are supported by WS-
C and WS-Tx.

 28
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

service allows participants to register to receive protocol messages associated
with a particular coordinator. Like the activation service, the registration service
assumes asynchronous communication and so specifies WSDL for both
registration service and registration requester.

The context is critical to coordination since it contains the information necessary
for services to participate in the protocol. It provides the glue to bind all of the
application’s constituent Web services together into a single coordinated
application whole. Since WS-Coordination is a generic coordination framework,
contexts have to be tailored to meet the needs of specific coordination protocols
that are plugged into the framework. The format of a WS-Coordination context is
specifically designed to be third-party extensible, and its contents are as follows:

• A coordination identifier with guaranteed global uniqueness for an
individual coordinator in the form of a URI

• An address of a registration service endpoint where parties receiving a
context can register participants into the protocol

• A time-to-live value which indicates for how long the context should be
considered valid

• Extensible protocol-specific information particular to the actual
coordination protocol supported by the coordinator.

This is shown Figure 17, where the schema states that a context consists of a
URI that uniquely identifies the type of coordination that is required
(xs:anyURI), an endpoint where participants to be coordinated can be
registered (wsu:PortReferenceType), and an extensibility element designed
to carry specific coordination protocol context payload (xs:any), which can carry
arbitrary XML payload.

Figure 17. WS-Coordination Context Schema Fragment.

<xs:complexType name="CoordinationContextType" abstract="false" >

 <xs:complexContent>

 <xs:extension base="wsu:ContextType">

 <xs:sequence>

 <xs:element name="CoordinationType"

 type="xs:anyURI" />

 <xs:element name="RegistrationService"
 type="wsu:PortReferenceType" />

 <xs:any namespace="##any" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:extension>

 29
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

 </xs:complexContent>

</xs:complexType>

We discussed earlier how the OASIS Business Transactions Protocol
coordinates participants in either atomic or cohesive transactions in order to
achieve consensus. The protocol defined in the BTP specification is an open-top,
two-phase completion protocol. However, there is no separation between
transactions and coordination in BTP, and all of the protocol assumes two-phase.
Attempting to change the type of coordination protocol (for example, to a three-
phase protocol) would require significant modifications to the specification and
affect all aspects of coordination and transactions.
However, it is worth noting that it is entirely possible to integrate BTP within WS-
C.

Transaction protocol

The WS-Transaction specification plugs into WS-C and proposes two common
industry completion patterns (specific coordination protocols), where each
supports the semantics of a particular kind of business-
to-business interaction:

• Atomic Transaction (AT): This is meant to map to
existing transaction standards which have a well-
defined behavior for atomicity (well-formed and
two-phase), isolation (no dirty reads, repeatable
reads) and durability (no lost data), in other
words, traditional ACID semantics. The important
thing to remember when considering Web
services is that they are for interoperability as
much as they are for the Web. In the past, making traditional transaction
systems talk to one another was a holy grail that was rarely achieved;
Web services offer unparalleled support for interoperability in this regard.
Traditional transaction systems already form the backbone of enterprise-
level applications and will continue to do so for the Web services
equivalent. Business-to-business activities will typically involve back-end
transaction processing systems either directly or indirectly and being able
to tie together these environments will be the key to the successful take-
up of Web services transactions (see Resources for an interesting
discussion by Vasters and the reference on Interoperability). Finally, AT is
useful if only for intra-domain environments where a customer needs to
consolidate operations across any number of internal applications. For
example, a merger may have resulted in the need to combine the apps of
the old and new business.

• Business Activity (BA): This provides flexible transaction properties and is
designed specifically for long-duration interactions, where holding on to

Protocol
extensibility.
WS-Tx is meant to be
a portfolio allowing
other patterns to be
added as requirements
are defined, such as
sessions, delegated
transactions, etc.

 30
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

resources is impossible or impractical. In this model, services are
requested to do work (for example, reserving a seat on a flight), and if they
can do so in a manner where that work can be later undone, the service
may inform the BA. In this way, if the BA later decides it needs to cancel
the work, it can inform the service. How services do their work and provide
compensation mechanisms is not the domain of the WS-Tx specification:
this is an implementation decision for the service provider.

It is important to note that the BA model derives from a specific industry
requirement in the BPEL4WS specification (see Resources for the specification).
Although ATs and BAs may be sufficient for the current use cases that the
specifications are aimed at, it is generally accepted that other protocols may well
be needed later. Because WS-Tx leverages WS-C, new protocols can be added
to the specification as and when the need arises. Therefore, the WS-Tx
specification allows growth if new protocols are required (or identified).

This is yet another important distinction between WS-Tx and BTP: whereas WS-
Tx admits the possibility that "one-size doesn’t fit all" and other protocols may
need to be supported later, the BTP specification is essentially closed and
constrained by its two-phase protocol. By making the separation between
coordination and transactions explicit within WS-C and WS-T, adding new
transaction protocols should be relatively straightforward and not impinge on
those that already exist. Unfortunately attempting to do the same with BTP could
potentially result in an entirely new specification, since all of the current protocol
is tied to two-phase completion coordination.

An important aspect of WS-Transaction that differentiates it from traditional
transaction protocols is that a synchronous request/response model is not
required. This model derives from the fact that WS-Transaction is, as you see in
Figure 18, layered upon the WS-Coordination protocol whose own
communication patterns are asynchronous by default, but can support other
interaction patterns.

 31
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 18. WS-Coordination and WS-Transaction.

WS-Transaction leverages the context management framework provided by WS-
Coordination in two ways. First of all it extends the WS-Coordination context to
create a transaction context. Secondly, it augments the activation and
registration services with a number of additional services:

• (Completion, CompletionWithAck
• PhaseZero
• 2PC
• OutcomeNotification
• BusinessAgreement
• BusinessAgreementWithComplete)

and two protocol message sets (one for each of the transaction models
supported in WS-Transaction).

The Atomic Transaction protocol (AT)

The Atomic Transaction (AT) protocol is a consensus group that enforces strict
atomicity among its participants. It is wrong to talk about Atomic Transactions
violating the "trust chasm" between Web services (see Resources for the
ObjectWatch reference); this ignores the central reason for using ATs:
interoperability and short-duration interactions. There is a place for traditional
transaction systems in Web services and this is precisely what Atomic
Transactions are concerned with.

To begin an atomic transaction, the client application may locate a coordinator
that supports WS-Transaction. Once located, the client sends a
CreateCoordinationContext message to the activation service specifying
http://schemas.xmlsoap.org/ws/2002/08/wstx as its coordination type and will get
back an appropriate WS-Transaction context. The transaction context has its

 32
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

CoordinationType element set to the WS-Transaction AT namespace and also
contains a reference to the atomic transaction coordinator endpoint (the WS-
Coordination registration service) where participants can be enlisted.
After obtaining a transaction context from the coordinator, the client application
then proceeds to interact with Web services to accomplish its business-level
work. With each invocation on a business service, the client propagates the
context, such that the each invocation is implicitly scoped by the transaction.
Once all the necessary application-level work has been completed, the client can
terminate the transaction. To do this, the client application registers its own
participant for the Completion or CompletionWithAck protocol. Once registered,
the participant can instruct the coordinator either to try to commit or roll back the
transaction.

Transaction termination normally uses the two-phase commit protocol (2PC), as
described earlier and illustrated in Figure 1. As with BTP, there is no ordering of
2PC participant invocations implied by the WS-Tx specification. If a transaction
involves only a single participant, WS-Transaction supports a one-phase commit
optimization similar to that in traditional transaction systems (and as you saw
earlier, in BTP). Since there is only one participant, its decisions implicitly reach
consensus, and so the coordinator need not drive the transaction through both
phases. In the optimized case, the participant will simply be told to commit, and
the transaction coordinator need not record information about the decision since
the outcome of the transaction is solely down to that single participant.
Figure 19 shows the state transitions of a WS-Transaction atomic transaction
and the message exchanges between coordinator and participant; the
coordinator-generated messages are shown in the solid line, whereas the
participant messages are shown by dashed lines.

Figure 19. Two-Phase Commit State Transitions.

Once the coordinator has finished with the transaction, the Completion or
CompletionWithAck protocol that originally began the termination of the

 33
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

transaction can complete and inform the client application whether the
transaction was committed or rolled back. Note that the CompletionWithAck
protocol insists that the coordinator must remember the outcome until it has
received acknowledgment of the notification from the participant.

In addition to the 2PC protocol, WS-Tx also provides two other protocols:
PhaseZero and OutcomeNotification. Accessing durable storage (whatever its
implementation) is often the performance bottleneck, and hence caching of an
object’s state (such as an entire database table) and operating on that cached
state for the duration of a transaction can significantly improve performance over
the alternative of continually going back and forth to the database. However,
there is obviously a need to force that state back to the original persistence store
prior to the transaction committing.

In traditional transaction systems this is accomplished through synchronization
participants. Synchronizations are informed that a transaction is about to commit.
They are then informed when the transaction has completed and in what state it
completed. Synchronizations essentially turn the two-phase commit protocol into
a four-phase protocol:

• Before the transaction starts the two-phase commit, all registered
synchronizations are informed. Any failure at this point will cause the
transaction to roll back.

• The coordinator then conducts the normal two-phase commit protocol.
• Once the transaction has terminated, all registered synchronizations are

informed. However, this is a courtesy invocation because any failures at
this stage are ignored: the transaction has terminated so there’s nothing to
affect.

When an Atomic Transaction is terminating, the associated coordinator first
executes the PhaseZero protocol if any participants registered for it. All
PhaseZero participants are told that the transaction is about to complete and
they can respond with either the PhaseZeroCompleted or Error message; any
failures at this stage will cause the transaction to roll back.

Additionally, some services may have registered an interest in the completion of
a transaction and they will be informed through the OutcomeNotificaton protocol
after 2PC has completed. Any registered OutcomeNotification participants are
invoked after the transaction has terminated and are told the state in which the
transaction completed (the coordinator sends either the Committed or Aborted
message). Since the transaction has terminated, any failures of participants at
this stage are ignored -- OutcomeNotification is essentially a courtesy and has no
bearing on the outcome of the transaction.

The fact that there are distinct protocols for synchronization and two-phase
commit is as important in AT as it is in traditional transaction systems. Being able

 34
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

to rely upon the order in which certain types of participants will be invoked allows
performance optimizations, such as caching, to be supported.

As you saw earlier, BTP has only one type of participant that can be enlisted in
an atom or a cohesion, and neither protocol supports any kind of relative
ordering. Hence providing an equivalent to synchronizations is not possible within
the scope of vanilla BTP.

Finally, after having gone through each of the stages in an AT, you can now see
the intricate interweaving of individual protocols that goes to make up the AT as a
whole in Figure 20.

Figure 20. The AT Model.

There is another fundamental difference between the AT model and the BTP
atom model to which it is often compared: the termination protocol is not open-
top and hence the distinction between participants and services is well-defined.
The termination protocol does not mix business level decisions into the commit
protocol, overloading what it may mean for a participant to receive a prepare
request, for example.

The reason for this is that Web services are typically written to operate in the
following way:

• A service receives a document requesting it to perform some work (such
as reserving a seat on a specific flight).

• Later that service may be sent another document requesting it to either
undo the work or accept it.

 35
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

If the work is being performed within the scope of a transaction (let’s assume it’s
an atomic transaction), then the interaction between the application and the
transaction service should be minimal -- the transaction coordinator only requires
access to the participants and they should not require strong interactions with the
services on whose behalf they operate.

In the scenario of a flight reservation service, the business-level (service)
methods, such as book seat, have already performed the necessary work (such
as provisionally reserving the seat). The explicit prepare operation of the open-
top protocol is simply not required to have business semantics. The assumed
advantages of an open-top approach (allowing decision time between the two-
phases) are not required. When the application decides to terminate the business
transaction, it wants the work to happen (or not) immediately, and all that is
required is to guarantee consensus between the participants.

Business Activities (BA)

Most business-to-business applications require transactional support in order to
guarantee consistent outcome and correct execution. These applications often
involve long-running computations, loosely-coupled systems, and components
that do not share data, location, or administration, and it is difficult to incorporate
atomic transactions within such architectures. For example, an online bookshop
may reserve books for an individual for a specific period of time, but if the
individual does not purchase the books within that period they will be "put back
onto the shelf" for others to buy. Furthermore, because it is not possible for
anyone to have an infinite supply of stock, some online shops may appear to
users to reserve items for them, but in fact may allow others to pre-empt that
reservation (in other words, the same book may be "reserved" for multiple users
concurrently); a user may subsequently find that the item is no longer available,
or may have to be reordered specially for them.

A business activity or BA is designed specifically for these kinds of long-duration
interactions, where exclusively locking resources is impossible or impractical. In
this model, services are requested to do work, and where those services have
the ability to undo any work, they inform the BA such that if the BA later decides
to cancel the work, it can instruct the service to execute its undo behavior.

While the full ACID semantics are not maintained by a BA, consistency can still
be maintained through compensation, though the task of writing correct
compensating actions (and thus overall system consistency) is delegated to the
developers of the services under control of the BA. Such compensations may
use backward error recovery, but will typically employ forward recovery.

The WS-Transaction Business Activity simply defines a protocol for Web
services-based applications to enable existing business processing and workflow
systems to wrap their proprietary mechanisms and interoperate across
implementations and business boundaries.

 36
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Central to WS-Tx is the notion of scopes and defining activity-to-task
relationships. A business activity may be partitioned into scopes, where a scope
is a business task or unit of work using a collection of Web services. Such
scopes can be nested to arbitrary levels, forming parent and child relationships.
A parent scope has the ability to select which child tasks are to be included in the
overall outcome protocol for a specific business activity, and so clearly non-
atomic outcomes are possible. A Business Activity defines a consensus group
that allows the relaxation of atomicity based on business-level decisions. In a
similar manner to traditional nested transactions, if a child task experiences an
error, it can be caught by the parent who may be able to compensate and
continue processing.

As you saw earlier, although BTP supports interposition, it does not support
nesting of scopes. This is an important difference between WS-Tx Business
Activities and BTP. Nested scopes are important for a number of reasons,
including:

• Fault-isolation: If sub-scope fails (for example, because a service it was
using fails) then this does not require the enclosing scope to fail, thus
undoing all of the work performed so far.

• Modularity: if there is already a scope associated with a call when a new
scope is begun, then the scope will be nested within it. Therefore, a
programmer who knows that a service requires scopes can use them
within the service. If the service’s methods are invoked without a parent
scope, then the service’s scopes will simply be top-level; otherwise, they
will be nested within the scope of the client.

When a child task completes it can either leave the business activity or signal to
the parent that the work it has done can be compensated later. In the latter case,
the compensation task may be called by the parent should it ultimately need to
undo the work performed by the child.

Unlike the Atomic Transaction protocol model, where participants inform the
coordinator of their state only when asked, a task within a business activity can
specify its outcome to the parent directly without waiting for a request. This
feature is useful when tasks fail such that the notification can be used by
business activity exception handler to modify the goals and drive processing
forward without having to meekly wait until the end of the transaction to admit to
having failed -- a well-designed Business Activities should be proactive, if it is to
be performant.
Underpinning all of this are three fundamental assumptions:

• All state transitions are reliably recorded, including application state and
coordination metadata (the record of sent and received messages).

 37
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

• All request messages are acknowledged, so that problems are detected
as early as possible. This avoids executing unnecessary tasks and can
also detect a problem earlier when rectifying it is simpler and less
expensive.

• As with atomic transactions, a response is defined as a separate operation
and not as the output of the request. Message input-output
implementations will typically have timeouts that are too short for some
business activity responses. If the response is not received after a
timeout, it is resent. This is repeated until a response is received. The
request receiver discards all but one identical request received.

As with atomic transactions, the business activity model has multiple protocols:
BusinessAgreement and BusinessAgreementWithComplete. However, unlike the
AT protocol which is driven from the coordinator down to participants, this
protocol is driven much more from the participants upwards.

Under the BusinessAgreement protocol, a child activity is initially created in the
Active state; if it finishes the work it was created to do and no more participation
is required within the scope of the BA (such as when the activity operates on
immutable data), then the child can unilaterally send an exited message to the
parent; this is equivalent to the participant resigning from the business
transaction as is also supported in BTP. However, if the child task finishes and
wishes to continue in the BA, then it must be able to compensate for the work it
has performed. In this case it sends a completed message to the parent and
waits to receive the final outcome of the BA from the parent. This outcome will
either be a close message, meaning the BA has completed successfully, or a
compensate message, indicating that the parent activity requires that the child
task reverse its work.

The BusinessAgreementWithComplete protocol is identical to the
BusinessAgreement protocol with the exception that the child cannot
autonomously decide to end its participation in the business activity, even if it can
be compensated. Rather the child task relies upon the parent to inform it when
the child has received all requests for it to perform work. The parent does this by
sending the complete message to the child. The child then acts as it does in the
BusinessAgreement protocol.

As with the AT model, another fundamental difference between the BA model
and the BTP cohesion model to which it is often compared is that it does not mix
business-level semantics with the transaction protocol. The reason for the BA
approach is that it's very similar to what traditional workflow systems do and how
most Web services are being written today: the compensation work is simply
considered as another activity -- it's not special. The work required to
compensate is already available from the service (such as unbook seat), and
obviously book seat does the work somehow (and this may well be provisional
until the application confirms the seat reservation).

 38
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Most workflow systems don't distinguish compensate activities from forward
progress activities: an activity is an activity and it just does some work. If that
work happens to compensate for some previous work then so be it. In addition,
most services you’ll find already have compensate operations written into their
definitions, like "unbook seat" or "cancel holiday" and they don't need to be
driven by some other transaction/coordination engine that then sends "prepare"
or "commit" or "roll back" to a participant which then has to figure out how to talk
to the service to accomplish the same goal.

Protocol optimizations

There are several optimizations to the WS-Tx protocol that are worth considering,
especially in light of their equivalents in BTP:

• Read-only: As you saw earlier, in a traditional two-phase commit protocol,
a participant can also return a read-only response to indicates that it does
not control any work that has been modified during the course of the
transaction, and therefore does not need to be informed of the outcome.
The Atomic Transaction protocol supports this optimization.

• Flexible consensus groups: As you have seen, the Atomic Transaction
protocol provides a strictly atomic consensus group with well-defined
ACID semantics. The Business Activity protocol provides a consensus
group that allows for the weakening of atomicity; in addition, because of
the activity-scope relationships that can be formed in the BA protocol, it is
easier to delineate work into different scopes of consensus.

• Participant resignation: The equivalent of read-only optimization in
Business Activities is for participants to resign (exit) from the activity. This
is similar to the BTP participant resignation optimization. Resignation can
occur at any time up to the point where the activity is completing and is
used by the participant to indicate that it no longer has an interest in the
outcome of the BA.

• Autonomous participant decisions: Because the Atomic Transaction
protocol is based on the traditional (presumed abort) transaction protocol,
it allows participants to make autonomous decisions about their ultimate
fate. If these decisions are made before the transaction begins to
terminate, then the transaction must roll back. If they happen after the
participant has prepared, then the decision may lead to a heuristic (non-
atomic) outcome, that must be resolved later.

• Carrier optimizations: Unlike BTP, the WS-C and WS-Tx protocols rely
mainly upon improvements in the Web services architecture and
implementations to provide protocol optimizations such as one-shot. This
should not be seen as a deficiency in BTP, but rather a property of firmly
placing WS-C and WS-Tx into a single deployment domain. Optimizations
of this kind are best dealt with by other architecture layers.

• One-phase: The Atomic Transaction protocol supports the one-phase
commit optimization.

 39
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

• Qualifiers: Additional qualifications to the protocol are handled by WS-
Policy, where Policy is a standardized mechanism to advertise the
operational characteristics.

Web services and WS-C/WS-Tx

As we have already stated, the Web Services Coordination and Web Services
Transactions specifications are firmly placed on the Web services architecture.
As such, they are designed to be able to use other Web services specifications
such as security, reliable messaging, etc. when and if required. However, unlike
BTP, these other requirements are clearly delineated within separate
specifications.

The travel agent scenario using BAs

This section will show how the travel agent scenario that we previously modeled
using BTP cohesions can just as easily be modeled using Business Activities.
For simplicity we'll only consider the situation of obtaining several flight quotes
and eventually accepting only the cheapest.

This example discusses the requirements of business transactions which need a
mechanism to select and manage the tasks that are included in the overall
application outcome. Figure 21 essentially reiterates the application
configuration: each flight service exposes operations to reserve, confirm, or
cancel seats on a specific flight.

Figure 21. The system configuration.

Note that although not shown in this example, the overall business activity can be
comprised of a number of tasks. Each task can be modeled as another business

 40
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

activity within the scope of the overall application. In addition, the task could be
implemented as an atomic transaction. WS-Tx allows the application to specify
scopes (relationships) without having to build logic within the overall business
process to track the relationships.

As before, the application makes invocations on each of the services to obtain a
quote for a seat on the flight. Xantas.com ALU.com and ZA.com acknowledge
the Travel Agent’s Flight Booking Requests (or application-level response). ALU
and BA provisionally book seats while Xantas actually reserves a seat.
Associated with the request, the transaction service manages the tasks that are
participating in the applications (in other words, the Participants Enroll, indicating
the reservation tasks are actively processing, while Xantas also indicates that it
has completed the reservation request (shown in Figure 22).

Figure 22. Making the requests.

Based on the Prices returned, the Travel Agent decides to go ahead and book
the two-legged flight offered by Xantas and ZA, shown in Figure 23. Because
ALU never reserved seats, there is no need to cancel the ALU flight. The Travel
Agent instructs ALU to cancel the provisional booking. (Optionally the Travel
Agent can allow the ALU provisional booking to timeout if the application is
constructed with scopes.)

 41
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 23. Canceling a quote.

Because the flight chosen involves two parties, Xantas and ZA, the transaction
Travel Agent then requests ZA to reserve a seat. ZA acknowledges the
reservation. The participant then tells the coordinator that task has completed
(Figure 24).

Figure 24. Choosing the right quote.

The application has now chosen the seat reservations that are to be included in
the overall booking. You will notice that the final set of participants chosen must
terminate atomically. In the example, ZA and Xantas need to make a
commitment to the transaction and complete as an atomic set. We could have

 42
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

shown this as an atomic transaction within the scope of the overall business
application, but instead we chose to illustrate a more simple scenario where the
Travel Agent forces this outcome directly.

The Coordinator now has received acknowledgements from Xantas.com and
ZA.com, and the requested portions of the business transaction Travel Agent
have completed. The coordinator therefore goes ahead and confirms (via close
shown in Figure 25) the seat reservations offered by ZA.com and Xantas.com.

Figure 25. Travel agent forcing the outcome.

If ALU had reserved a seat, then the Travel Agent would need to instruct ALU to
cancel the booking. The transaction service would then remove ALU from the
tasks participating in the transaction (Participant sends exited to the
Coordinator). The Travel Agent would then confirm the reservation for the
remaining tasks as shown in Figure 26.

 43
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Figure 26. Travel agent confirming the quote.

Comparing and contrasting

Although at first glance it may seem like there is commonality between the two
specifications (both support a two-phase completion protocol, for example), as
you’ve seen there are significant differences. This section will re-examine some
of the issues that we have already discussed, as well as some that we haven’t.

Pros and cons of BTP

As you might expect from a specification that took over a year to develop, on the
plus side the BTP specification is well formed and complete. Unfortunately,
although the protocol is relatively straightforward, the specification is nearly 200
pages! It is thus not an easy sell for customers or analysts (and sometimes
implementers).

What does it mean to be a user of a Web services transaction? Initially it may
seem like a good idea to let business logic directly affect the flow of a transaction
from within a transaction service, but in practice it doesn’t really work. It blurs the
distinction between what you would expect from a transaction protocol
(guarantees of consistency, isolation etc.) which are essentially non-functional
aspects of a business "transaction", with the functional aspects (reserve my
flight, book me a taxi, etc.)

In BTP, because business logic is encoded within the transaction protocol, it
essentially means that a user has to be closely tied to (or perhaps even be) the
coordinator. Business information, such as the ability for a participant to remain

 44
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

prepared (for example, hold onto a hotel room) for a specific period of time is
propagated from the participant to the coordinator, but there is nothing within the
protocol to allow this information to filter up to the application/client where it really
belongs.

In order to use cohesions it is also necessary for Web services to expose back-
end implementation choices about participants. In order to parameterize the two-
phase completion protocol, the terminator of the cohesion obviously needs to be
able to say "prepare A and B and cancel C and D," where A, B, C and D are
participants that have been enrolled in the cohesion by services (such as a flight
reservation system). In a traditional transaction system, users don’t see the
participants (imagine if you had to explicitly tell all of your XA resource managers
to prepare and commit?) Naturally this is something that programmers don’t feel
comfortable with and it goes against the Web services orthodoxy.

Also, because BTP requires transaction control to use the open-top approach, it
is difficult to leverage existing enterprise transaction implementations. Few
transaction systems (or their administrators) will feel comfortable exposing their
coordinators through the two-phase interface.

Furthermore, the BTP specification expends great efforts to ensure that two-
phase completion does not imply ACID semantics. This is good in so far that
traditional ACID transactions are not suitable for all types of Web services
interactions. However, everything is left up to back-end implementation choices
and there is nothing in the protocol (implicit or explicit) to allow a user to
determine what choices have been made. Therefore, it is impossible to reason
about the ultimate correctness of a distributed application. For example, if you
wanted to use BTP for ACID transactions, then of course services could use
traditional XA resource managers (for example) wrapper by BTP participants.
Unfortunately, there is no way within the BTP for those services to inform
external users that this is what they have done so that they can safely be used
within the scope of a BTP "ACID" transaction.

As you have seen, each model in WS-Tx clearly defines the semantics within the
protocol (Atomic Transaction is ACID, for example). The models in WS-Tx are
each aimed at a specific problem domain and is not intended to be used as a
global panacea. Unfortunately, BTP does not have such well-differentiated
models: the cohesion model is essentially a superset of the atom model.
Therefore, BTP has only one model that must be used to solve a variety of
different problems. It does this by relaxing restrictions such as atomicity,
durability etc. within the protocol (cohesion or atom) and allowing services to
define those semantics outside of the model. Although this may appear at first
glance to give developers increased flexibility, this has the disadvantage of not
allowing them to be able to reason about an application’s overall functionality and
behavior. It also makes it difficult to construct applications from arbitrary services
since within the protocol, you cannot determine a priori how a service will behave

 45
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

– extra information about the semantics and behavior of the service would have
to be available in some implementation/vendor-specific manner.

Pros and cons of WS-Tx

Both the WS-C and WS-Tx specifications are smaller than BTP, at about 45
pages in total. Simplicity and interoperability with existing transaction
infrastructures played a key role in their development. As we mentioned at the
start of this paper, the WS-C and WS-Tx specifications have not yet been
submitted to a standardization body, so errors and omissions are inevitable.
However, these issues will all be resolved with subsequent revisions; there are
no fundamental flaws in either specification.

On the plus side, the separation of coordination from transactions is good;
coordination is a more fundamental requirement and a separate framework offers
the chance for a cleaner separation of concerns. Because WS-C does not imply
transactionality or a specific protocol implementation, it can therefore be used in
more places than other protocols that have use of coordination but are tied to
transactions (such as BTP).

The fact that WS-Tx Atomic Transactions are meant specifically for closely-
coupled interactions with ACID semantics makes integration with back-end
infrastructures easier. Web services are for interoperability as much as for the
Internet. As such, interoperability of existing transaction processing systems will
be an important part of Web services transactions. Such systems already form
the backbone of enterprise-level applications and will continue to do so for the
Web services equivalent. Business-to-business activities will involve back-end
transaction processing systems either directly or indirectly and being able to tie
together these environments will be the key to the successful take-up of Web
services transactions.

In addition, because the semantics of Atomic Transactions and their participants
are well-defined, it takes away any ambiguity from users and services: they know
a priori what semantics to expect because it is a requirement from the protocol.
Because BTP essentially only has one type of transaction (atoms are a subset of
cohesions), it must allow flexible implementations of participants for long-duration
interactions and therefore BTP does not define strict semantics for any
participant. It is up to the service/participant implementer to somehow make this
information available to users outside the scope of the transaction protocol.
The WS-Tx Business Activity gives service developers freedom to define
compensation mechanisms that best suit their services (for example, using
Atomic Transactions where necessary), while at the same time providing a
simple model for the users of these services. In addition, it ties in well with Web
services choreography techniques such as BPEL4WS.

Importantly as you’ve already seen, because WS-Tx leverages WS-C, it is
intended as a portfolio of extended transaction models, each suited for a specific

 46
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

problem domain. Therefore, as use cases appear that cannot be addressed by
one of the protocols already within WS-T, new protocols may be added.
The table shows a summary of the various differences and similarities between
WS-C/T and BTP.

Comparative analysis

 WS-C/Tx BTP

Coordination
framework WS-C None – tied to two-phase.

Transaction
framework

None, but current defined
protocols cover typical patterns
(AT and BA); others to be added
later.

General protocol, no patterns. Statically
defined.

Strict atomic model

Atomic Transaction - Atomic
Transaction requires strict ACID
properties. Specifically for
interoperability with traditional
transaction systems.

Atom - Atom is atomic only, other properties
specified by service (and not available via
protocol). Uses open-top protocol; makes
interoperability with existing transaction
systems difficult.

Relaxed model Business Activity allows flexible
participant list.

Cohesions allow flexible participant list.
Requires participants to be exposed to
application/terminator.

Scopes
Yes. Business Activity manages
relationship between scopes.
Nested scopes allowed.

No. Cohesion manages relationship within
scope.

Flexible outcomes
for consensus
groups.

Yes, via Business Activity. Yes, via cohesion.

Flexible
participation in
consensus groups.

Yes. Participants can exit in
Business Activity protocol.

Yes, participants can resign from a cohesion.
(Resignation from an atom is equivalent to
read-only in Atomic Transaction.)

Service behavior Defined by the protocols. Services define behavior (not specified by
BTP).

Business
logic/coordinator
separation

Distinct.
Mixed (open-top protocol requires strong
coupling between business logic and
coordinator).

Web services-
specific Yes. No. Requires a lot of extra effort from the

specification/protocol.

Failure recovery Optimized protocol. Re-drive protocol.

Conclusions

A few years ago the world of Web services and transactions looked like requiring
new techniques to address the problems that it presented, and BTP was seen as
the solution to those problems. Unfortunately, with the benefit of hindsight it did
not address what users really want: the ability to use existing enterprise
infrastructures and applications and for Web services transactions to operate as
the glue between different corporate domains.

 47
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

Although the BTP model has some similarities with WS-Tx, the two specifications
differ in some critical areas. For example, transaction interoperability: most
enterprise transaction systems do not expose their coordinators through the two-
phase protocol. In addition, BTP has many subtle (and some not-so-subtle)
impacts on implementations, both at the transaction level and, more importantly,
at the user/service level.

Much has been made of the fact that ACID transactions aren’t suitable for
loosely-coupled environments like the Web. However, very little attention has
been paid to the fact that these loosely-coupled environments tend to have large
strongly-coupled corporate infrastructures behind them. Any Web services
transactions specification should not ask "what can replace ACID transactions?",
but rather "how can we leverage what already exists?"

Resources

• Look for X/Open CAE Specification – Distributed Transaction Processing:
The XA Specification, X/Open Document Number XO/CAE/91/300 (ISBN
1-872630-24-3).

• Read the OMG Object Transaction Service (OTS 1.2) specification from
omg.org (September, 2002).

• Find the Web Services Security specification on developerWorks (April,
2002).

• Read over the Web Services Addressing specification on developerWorks
(March, 2003).

• Get the BTP Committee specification on OASIS (April, 2002).

• Find the Web Services Coordination Specification on developerWorks
(September, 2003).

• Read over the Web Services Transactions Specification on
developerWorks (August, 2003).

• Get more information in "The Business Transactions Protocol:
Transactions for a New Age" (Web Services Journal, November 2002).

• Find the Travel Agent Scenario discussed in this article in The Business
Transactions Protocol Primer from OASIS (June, 2002).

• Read over the OMG Additional Structuring Mechanisms for the OTS
specification from omg.org (September, 2002).

• Read this interesting discussion in the Clemens Vasters weblog.

 48
From www-106.ibm.com/developerworks/webservices/library/ws-comproto/ 28 October 2003

• Read the Business Process Execution Language for Web Services,
version 1.1 specification on OASIS (May, 2003).

• Entertain your mind while learning more in "Shootout at the transaction
corral; BTP versus WS-T" (ObjectWatch, October 2002).

• Find the Web Services Policy Framework specification on developerWorks
(May, 2003).

About the authors

Mark Little is Chief Architect, Transactions for Arjuna Technologies Ltd. He has worked in the area of
transaction processing for nearly twenty years and has helped develop several specifications in the
area of Web services transactions.

Tom Freund is a Senior Technical Staff Member at IBM who has worked extensively in the area of
transaction processing. He is currently active promoting transaction processing concepts in areas of
emerging technology.

	A comparative analysis of WS-C/WS-Tx and OASIS BTP
	7 Oct 2003, Mark Little, Arjuna Technologies Ltd. and Thomas J. Freund, IBM
	Overview
	Functionality of Web services transactions
	Characteristics of extended transactions
	Requirements
	Section summary

	The OASIS Business Transactions Protocol
	Transaction types
	Open-top completion and business logic
	Qualifiers
	Protocol optimizations
	Web services and BTP
	Example of a cohesive transaction

	Web Services Coordination and Transaction
	The XML context

	Coordination protocol
	Transaction protocol
	The Atomic Transaction protocol (AT)
	Business Activities (BA)
	Protocol optimizations
	Web services and WS-C/WS-Tx
	The travel agent scenario using BAs

	Comparing and contrasting
	Pros and cons of BTP
	Pros and cons of WS-Tx

	Conclusions
	Resources
	About the authors

	
	Arjuna Technologies Ltd.

