
Introduction to Web Services
Architecture

The Web Services Infrastructure Company

Page 2 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Introduction to Web Services Architecture

Table of Contents

Executive Summary... 3

What are Web Services?... 4

 Distilling Common Themes... 5

 Dissecting the Name... 5

Service Oriented Architecture.. 6

 SOA Functional Architecture Components................................... 6

SOA Systems... 7

 Vertical Technologies... 7

 Internet Middleware.. 8

Web Services Architecture.. 9

 Transport... 9

 Description...10

 Discovery..11

 Alternate Discovery Mechanisms...13

Extending the Basic Web Services Architecture.......................................13

WSA Invocation Mechanisms..16

Implementing Web Services Architecture..17

Systinet WASP...20

About Systinet..22

Page 3 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Executive Summary
Web services appear to be the latest “new thing”. But what are Web services? If you

ask five people to define Web services, you’ll probably get at least six answers. Even

so, most people will agree that a Web service represents an information resource or

business process that can be accessed over the Web by another application, and that it

communicates using standard Internet protocols.

What distinguishes Web services from other types of Web-based applications is that Web

services are designed to support application-to-application communication. Other Web

applications support human-to-human communication (email and instant messaging) or

human-to-application communication (browsers). Web services are designed to allow

applications to communicate without human assistance or intervention.

Even though Web services are new, from an architectural perspective, they are

based on established middleware design principles for application-to-application

communication. These design principles are known as the service-oriented architecture

(SOA). Previous SOA systems include RPC, RMI, DCOM, and CORBA. The Web services

architecture (WSA) represents the convergence of SOA and “the Web”.

The Web makes WSA completely platform- and language-independent. Web services can

be developed using any language, and they can be deployed on any platform: from the

tiniest device to the largest super computer.

Another way to think about Web services is as Internet middleware. Today most

Web services are implemented using a core set of Internet middleware technologies

including:

• XML, which provides a platform-neutral mechanism to represent data

• SOAP, which defines the data communication protocol for Web services

• WSDL, which describes a Web Service

• UDDI, which provides a means to advertise and discover Web services

A Web services platform is a set of products that implement these Internet middleware

technologies. When selecting a Web services platform, you should keep in mind a

number of factors, including:

• Language and platform support

• Performance and scalability

• Security

• Manageability

Page 4 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Systinet Web Applications and Services Platform (WASP) provides the fastest, most

scalable, most secure, most advanced Web services solution in the industry. WASP goes

far beyond supplying just a basic Web services platform. WASP is designed to support

the rigorous requirements of production-class application systems. WASP performs

5 to 10 times faster than other Web services solutions. WASP’s optimized resource

management services also ensure excellent scalability. WASP is the only Web services

platform to support an integrated, application-level, end-to-end security framework.

And WASP provides a comprehensive management infrastructure to coordinate your

entire Web services system.

WASP, which supports Java and C++, is designed to fit into your existing configuration.

WASP is portable across all leading operating systems, application servers, and

databases.

What are Web Services?
If you ask five people to define Web services, you’ll probably get at least six answers.

In February 2002, the W3C Web Services Architecture Working Group (consisting of 75

members) exchanged nearly 400 emails over two weeks trying to define the term. They

eventually abandoned the effort to achieve consensus.

For what it’s worth, the last definition that the team produced was, “A Web service is

a software application or component identified by a URI, whose interfaces and binding

are capable of being described by standard formats and supports direct interactions

with other software applications or components via Internet-based protocols”.1

Here are a few more definitions from various industry sources:

“Web services are loosely coupled software components delivered over standard

Internet technologies.”
- Daryl Plummer, Gartner2

[Web services are] “Loosely coupled, reusable software components that semantically

encapsulate discrete functionality and are distributed and programmatically accessible

over standard Internet protocols.”
- Brent Sleeper and Bill Robins, Stencil Group3

“A Web service is any piece of software that makes itself available over the Internet

and uses a standardized XML messaging system.”

- Ethan Cerami, author of Web Services Essentials4

1 From the W3C WS-Arch discussion list: http://lists.w3.org/Archives/Public/www-ws-arch/2002Mar/0028.html
2 UDDI Advisory Group presentation, June 2000.
3 “Defining Web Services”: http://www.stencilgroup.com/ideas_scope_200106wsdefined.html
4 Web Services FAQ: http://www.oreillynet.com/pub/a/webservices/2002/02/12/webservicefaqs.html

http://lists.w3.org/Archives/Public/www-ws-arch/2002Mar/0028.html
http://www.stencilgroup.com/ideas_scope_200106wsdefined.html
http://www.oreillynet.com/pub/a/webservices/2002/02/12/webservicefaqs.html

Page 5 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

“From a technical point of view, Web services can be seen as an application API that

can be invoked by an Uniform Resource Locator (URL).”
- Urban Bettag, Reuters5

“I think of a “Web service” as an arbitrarily grouped set of resources intended for

machine (not human) manipulation, as a “Web site” is an arbitrarily grouped set of

resources intended for human manipulation.”
- Paul Prescod, co-author of The XML Handbook and W3C participant6

 Distilling Common Themes
These definitions share a number of common themes. Everyone seems to agree

that Web services are accessed via Internet protocols. There appears to be general

consensus that a Web service represents a piece of software or perhaps a software

component, although one definition asserts that the Web service is the interface rather

than the actual software. Another recurring theme is that Web services are intended

to be consumed by software rather than by humans. A couple of other points appear

more than once: Web services are loosely coupled, and Web services are identified by

a URI and accessed by a URL. It’s interesting to note that only one of these definitions

makes an association between Web services and XML, and no one seems willing to tie

the definition of Web services to any specific Web services-related technology, such as

SOAP. Web services represent an architecture – not a particular set of technologies.

 Dissecting the Name
Another way to look for a definition is to analyze the constituent parts of the name

“Web service”.

• The Web refers to an immense information space that enables access to Web

resources. A Web resource is some type of electronic construct, such as a file,

network, processor, application, or service. Every Web resource is identified by

its URI and accessed via Web protocols.

• A service is a resource that exposes its functionality through a programmatic

interface, which means that it’s designed to be consumed by software rather

than by humans. The method of invocation and the possible results of that

invocation are described by a contract.

• A Web service, therefore, is a service that is identified by a URI and can be

accessed by applications via Web protocols in accordance with the contract

that describes its programmatic interface.

5 W3C Web Services Workshop Positioning Paper: http://www.w3.org/2001/03/WSWS-popa/paper03
6 From the W3C XMLP discussion list: http://lists.w3.org/Archives/Public/xml-dist-app/2002Jun/0038.html

http://www.w3.org/2001/03/WSWS-popa/paper03
http://lists.w3.org/Archives/Public/xml-dist-app/2002Jun/0038.html

Page 6 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Service Oriented Architecture
The concept of a service is key to understanding Web services. A Web services

environment conforms to a Service Oriented Architecture (SOA). Figure 1 depicts

the conceptual roles and operations of an SOA. The three basic roles are the service

provider, the service consumer, and a service broker. A service provider makes the

service available and publishes the contract that describes its interface. It then

registers the service with a service broker. A service consumer queries the service

broker and finds a compatible service. The service broker gives the service consumer

directions on where to find the service and its service contract. The service consumer

uses the contract to bind the client to the service.

Figure 1. The three conceptual roles and operations of a service oriented
architecture.

 SOA Functional Architecture Components
In order for the three conceptual roles to accomplish the three conceptual operations,

an SOA system must supply three core functional architecture components:

• Transport. The transport component represents the formats and protocols

used to communicate with a service. The data format specifies the data

types and byte stream formats used to encode data within messages. The

wire protocol specifies the mechanism used to package the encoded data

into messages. The transfer protocol specifies the application semantics

that control a message transfer. The transport protocol performs the actual

message transfer.

• Description: The description component represents the languages used to

describe a service. The description provides the information needed to bind

to a service. At a minimum, a description language provides the means to

specify the service contract, including the operations that it performs and the

parameters or message formats that it exchanges. A description language is

Service
Broker

Service
Provider

Service
Contract

RegisterFind

Service
Consumer

Bind

Client Service

Page 7 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

a machine-readable format that can be processed by a compiler to produce

communication code, such as client proxies, server skeletons, stubs, and

ties. These generated code fragments automate the connection between the

application code and the communications process, insulating the application

from the complexities of the underlying middleware.

• Discovery: The discovery component represents the mechanisms used to

register or advertise a service and to find a service and its description.

Discovery mechanisms may be used at compile time or at runtime. They may

support static or dynamic binding.

SOA Systems
Although Web services are new, the concepts behind service-oriented systems have

been around for quite a while. Most standard distributed computing middleware

systems implement a SOA. Examples of earlier SOA systems are:

• Java RMI7: Java Remote Method Invocation

• CORBA8: The Object Management Group Common Object Request Broker

Architecture

• DCE9: The Open Group Distributed Computing Environment

• DCOM10: Microsoft Distributed Component Object Model

Each SOA system defines a set of formats and protocols that implement the core SOA

functions. An SOA system often also defines an invocation mechanism, which includes

an application programming interface and a set of language bindings. Table 1 shows the

different formats and protocols used by various SOA systems.

 Vertical Technologies
Although it’s beyond the scope of this paper to examine Java RMI, CORBA, DCE, and

DCOM in detail, you’ll notice that each of these middleware technologies has defined

its own vertical set of formats and protocols to implement the core SOA functions. This

approach ensures consistency among applications that share the same middleware,

but prevents interoperability with applications that use different middleware. It

also requires that every service producer and service consumer that engages in a

conversation must have the appropriate middleware loaded on its machine.

7 The Java RMI specification: http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html
8 The OMG CORBA/IIOP specification: http://www.omg.org/technology/documents/formal/corba_iiop.htm
9 The Open Group DCE RPC specification: http://www.opengroup.org/onlinepubs/9629399/.
10 DCOM is based on DCE RPC. DCOM information: http://www.microsoft.com/com/tech/dcom.asp

http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.opengroup.org/onlinepubs/9629399/
http://www.microsoft.com/com/tech/dcom.asp

Page 8 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

 Internet Middleware
You can think of Web services as a new form of middleware – let’s call it Internet

middleware. But unlike previous SOA systems, Internet middleware does not require

an entirely new set of protocols. The most basic Web services protocol is the industry

standard Extensible Markup Language (XML), which is used as the message data

format, and is also used as the foundation for all other Web services protocols. Today

most Internet middleware systems are implemented using a core set of technologies,

including SOAP, WSDL, and UDDI. These technologies define the transport, description,

and discovery mechanisms, respectively. We’ll delve deeper into these technologies in

the next section of this paper. Each of these technologies are defined and implemented

in XML. One important ramification of the use of XML is that any application, written

in any language, running on any platform, can interpret Web services messages,

descriptions, and discovery mechanisms. No specific middleware technology needs

to be available to converse using Web services. Any application can interpret a SOAP

message using standard XML processing tools.

Java RMII1 CORBA12 DCE13 Web Services

Invocation
Mechanism Java RMI CORBA RMI RPC JAX-RPC, .NET, …

Data
Format Serialized Java CDR NDR XML14

Wire
Format Stream GIOP PDU SOAP15

Transfer
Protocol JRMP IIOP RPC CO HTTP, SMTP, …

Interface
Description Java Interface CORBA IDL DCE IDL WSDL16

Discovery
Mechanism Java Registry COS naming CDS UDDI17

Table 1. A comparison of SOA formats and protocols.

11 JRMP = Java Remote Method Protocol.
12 ORB = Object Request Broker. CDR = Common Data Representation. GIOP = General Inter-ORB Protocol.

IIOP= Internet Inter-ORB Protocol. IDL = Interface Definition Language. COS = CORBA Object Services.
13 RPC = Remote Procedure Call. NDR = Network Data Representation. PDU = Protocol Data Units.

RPC CO = RPC Connect-Oriented protocol. IDL = Interface Definition Language. CDS = Cell Directory Service.
14 Extensible Markup Language 1.0, W3C Recommendation: http://www.w3.org/TR/REC-xml
15 SOAP 1.2 Part 1, W3C Working Draft: http://www.w3.org/TR/soap12-part1/
16 Web Services Description Language 1.1, W3C Note: http://www.w3.org/TR/wsdl
17 Universal Description, Discovery and Integration specifications: http://www.uddi.org/specification.html

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
http://www.uddi.org/specification.html

Page 9 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Web Services Architecture
In most Internet middleware configurations, the three core functional components

(transport, description, and discovery) in the Web Services Architecture (WSA) are

implemented using SOAP, WSDL, and UDDI, respectively. Figure 2 shows the conceptual

SOA architecture using these technologies. A UDDI registry plays the role of service

broker. The register and find operations are implemented using the UDDI Inquiry and

UDDI Publish APIs. A WSDL document describes the service contract, and is used to bind

the client to the service. All transport functions are performed using SOAP. Let’s take a

closer look at the WSA transport, description, and discovery functions.

Figure 2. The SOA conceptual architecture with SOAP, WSDL, and UDDI.

 Transport
The transport functional component defines the formats and protocols used to

communicate between clients and services. The WSA formats and protocols are defined

by SOAP, a lightweight, extensible XML protocol. SOAP provides a simple messaging

framework that allows one application to send an XML message to another application.

• Data format. The SOAP data format is XML. The mechanism by which the data

are encoded is totally extensible, and in fact can be specified within each

SOAP message. The data format can represent an RPC invocation, in which

case the message body is composed as a structure containing the RPC input

parameters or return value. The name of the structure indicates the method

to be invoked. When using the RPC representation, the data are normally

encoded using an XML-based encoding style. Alternately, the data format

can be in the form of an XML document, in which case the data are normally

encoded using a specific XML Schema.

• Wire format. The SOAP wire format is an XML document called a SOAP

envelope. The envelope contains an optional SOAP header and a mandatory

Service
Broker

Service
Provider

Service
Consumer

Client Service

WSDL

UDDI Inquiry
find_xxx

UDDI Publish
save_xxx

SOAP

XML

Page 10 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

SOAP body. The SOAP body contains the message payload, encoded in XML.

• Transfer protocol. SOAP defines an abstract binding framework that allows

SOAP messages to be transferred using a variety of underlying transfer

protocols. The SOAP specification defines a protocol binding for HTTP. Bindings

have also been defined for HTTPS, SMTP, POP3, IMAP, JMS, and other protocols.

• Extensions. Additional information can be included with a SOAP message

within a SOAP header. The SOAP header can provide directive or control

information to the service, such as security information, transaction context,

message correlation information, session indicators, or management

information.

 Description
The description functional component defines the language used to describe a

service. The service consumer uses the description to bind the client to the service.

The WSA description language is the Web Services Description Language (WSDL), a

set of definitions expressed in XML. A WSDL document describes what functionality

a Web service offers, how it communicates, and where to find it. The various parts

of a Web service description can be separated into multiple documents to provide

more flexibility and to increase reusability. Figure 3 maps the three parts of a WSDL

description to the specific WSDL definition elements. A WSDL implementation document

can be compiled to generate a client proxy that can call the Web service using SOAP.

• Abstract interface. The what part of a WSDL document describes the abstract

interface of the Web service. It essentially describes a service type. Any

number of service providers can implement the same service type. The WSDL

what part defines a logical interface consisting of the set of operations that

the service performs. For each operation it defines the input and/or output

messages that are exchanged, the format of each message, and the data type

of each element in the message.

• Concrete binding. The how part of a WSDL document describes a binding of

the abstract interface to a concrete set of protocols. The binding indicates

whether the message is structured as an RPC or as a document; it specifies

which encoding style or XML Schema should be used to encode the data;

it specifies which XML protocol should be used to construct the envelope;

it indicates what header blocks should be included in the message; and it

indicates which transfer protocol should be used. The how part includes or

imports the associated WSDL what part.

• Implementation. The where part of a WSDL document describes a service

implementation. A service implementation is a collection of one or more

related ports. Each port implements a specific concrete binding of an abstract

interface. The port specifies the access point of the service endpoint. A

business might offer multiple access points to a particular service, each

Page 11 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

implementing a different binding. The where part includes or imports the

associated WSDL how part. A service producer should always publish the where

WSDL part with the Web service.

Figure 3. The three different parts of a WSDL description

 Discovery
The discovery functional component provides a mechanism to register and find

services. Some discovery functions are used at development time, while others are

used at runtime. The WSA discovery mechanism is implemented using a Universal

Description, Discovery and Integration (UDDI) registry service. For the most part, UDDI

is used at development time, although it can also be used at runtime. UDDI is itself a

Web service, and users communicate with UDDI using SOAP messages. UDDI manages

information about service types and service providers, and it provides mechanisms to

categorize, find, and bind to services.

• Service types. A service type, defined by a construct called a tModel, defines

an abstract service. Multiple businesses can offer the same type of service, all

supporting the same service interface. The tModel provides a pointer to the

WSDL document that describes the abstract interface (the what part).

• Service providers. A service provider registers its business and all the

services it offers. For each service offered, the service provider supplies the

binding information needed to allow a consumer to bind to the service. The

bindingTemplate construct provides a pointer to the WSDL document that

describes the service binding (the how part). It also specifies the access point

of the service implementation. The WSDL where part is usually co-resident

with the access point.

• Categorization. When a service provider registers a service or service type,

he can categorize the entity (business, service, or tModel) using a variety of

taxonomies. The UDDI specification defines a core set of taxonomies, such as

geographic location, product codes, and industry codes. Additional taxonomies

can be added to the registry to support more focused or customized

<types>
<message>
<portType>

<operation>

Abstract Interface
Definition
(What part)

Concrete Binding Definition
(How part)

Implementation Definition
(Where part)

<service>
<port>

<binding>

Page 12 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

categorization and search.

• Find. When looking for a Web service, a service consumer queries the UDDI

registry, searching for a business that offers the type of service that he wants.

Users can search the registry for services by service type or service provider,

and queries can be qualified using the taxonomies. From the tModel entry for

the service type, the consumer can obtain the WSDL description describing

the abstract interface. The consumer can compile this what part description

to create a client interface for the abstract service. This abstract interface

could be used to access multiple implementations of the service type. From

the bindingTemplate entry for a specific service, the consumer can obtain the

access point of the service and the WSDL description of the service binding.

• Static binding. Developers can bind clients to services either at compile

time or at runtime. Using the WSDL how part, a developer can compile a

concrete SOAP client interface or stub that implements the binding required to

communicate with a specific Web service implementation. This pre-compiled

stub can be included in a client application. The access point can be specified

at runtime.

• Dynamic binding. Because a WSDL document is machine-readable, WSA also

supports dynamic binding. Using just the WSDL what part at compile time, a

developer can generate an abstract client interface that can work with any

implementation of a specific service type. At runtime the client application

can dynamically compile the WSDL where part (containing the how part) and

generate a dynamic proxy that implements the binding.

• Dynamic discovery. Since UDDI is itself a Web service, an application can

query the registry at runtime, dynamically discover a service, locate its access

point, retrieve its WSDL, and bind to it, all at runtime. The client interprets

the WSDL to dynamically construct the SOAP calls.

Figure 4 shows the relationship between UDDI constructs and WSDL parts. In this

example, we have an industry standard specification for the XYZ service type. The

XYZ service type is registered in UDDI using a tModel construct. The tModel points to a

WSDL document that describes the abstract interface of this service type (a WSDL what

part). There are two service providers (Company A and Company B) that implement the

XYZ service type. Each service provider registers its business and its implementation

of the XYZ service using the Business Entity, Business Service, and Binding Template

constructs. The Binding Template points to the service implementation and to binding

information for the service (a WSDL how part). Normally the WSDL where part is co-

located with the service implementation and can be accessed by performing an HTTP

GET on the access point URL or the URL appended with “?wsdl” or “/wsdl”.

Page 13 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Figure 4. The relationship between UDDI constructs (tModel, businessEntity,

businessService, and bindingTemplate) and WSDL parts (what, how, and where).

 Alternate Discovery Mechanisms
UDDI is particularly useful if the service consumer doesn’t know which type of Web

service it wants to use, which service providers provide the service, or where to go

to find the services. If a service consumer already knows this information, then the

consumer can use a simpler, more direct form of discovery, such as the Web Services

Inspection Language (WS-Inspection18). WS-Inspection is an XML format that can be used

to inspect a Web site for available Web services. Assuming that the service consumer

knows the home page URL for the service provider, and knows which service type it’s

looking for, the consumer can use WS-Inspection to find information (including WSDL

where part descriptions) about all of the Web services offered by that service provider.

Given a WSDL where part description, a service consumer has everything it needs to

bind to the service.

Extending the Basic Web Services Architecture
As mentioned earlier, SOAP provides a built-in extension mechanism via SOAP headers.

A SOAP header can be used to pass directive or control information between client and

service to implement extended middleware functions, such as routing, intermediate

caching, reliable delivery, asynchronous communications, stateful conversations,

transactions, security, and management.

18 The WS-Inspection specification: http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

Industry Standard
XYZ Service

tModel

Company B

Company A

B's XYZ
Business Service

Company B
Business Entity

WSDL

B's XYZ Service
Binding Template

A's XYZ
Business Service

A's XYZ Service
Binding Template

Company A
Business Entity

(what part)

WSDL
(how part)

WSDL
(where part)

XYZ Service
Implementation

WSDL
(how part)

WSDL
(where part)

XYZ Service
Implementation

http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

Page 14 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

To illustrate this extension mechanism, let’s take a look at how you can use SOAP

headers to support security. Security is a rather expansive topic. There are four

different functions that fall under this topic:

• Authentication and Proof of Identity. Authentication is the process used to

verify an entity’s identity. There are a number of mechanisms that can be used

to authenticate an entity, such as HTTP Basic and HTTP Digest authentication,

a PKI certificate authority, and a Kerberos login. Once an authentication

authority has verified your identity, you may receive an authentication

token that you can use in future interactions as proof of identity. Such an

authentication token could take the form of an X.509 certificate, a Kerberos

ticket, or a SAML19 authentication assertion.

• Authorization and Access Control. Authorization is the process used to

determine if an authenticated entity has permission to perform a particular

action or function. You may want to define access control policies for all

services at a given location, for individual services, or for specific operations

in a service.

• Confidentiality and Integrity. Encryption protects the confidentiality and

integrity of message communication. Confidentiality prevents unauthorized

access to the contents of the message. Integrity prevents unauthorized

modification of the message.

• Proof of Origin. A digital signature provides proof that the signed data was

sent from a specific authenticated identity. All or part of the message may be

signed.

The WSA architecture supports security by allowing you to specify and exchange

security information in a SOAP header. Figure 5 conceptually shows how an

authentication token and a digital signature could be specified in a SOAP header. This

diagram is based on the WS-Security20 specification, which defines a set of SOAP header

constructs that can be used to pass security information in SOAP messages. The WS-

Security specification supports the following features:

• A way to pass authentication tokens.

• A mechanism to sign message content using XML Signature

• A way to pass signature and key information to allow the receiver to interpret

the signed data

19 The OASIS SAML (Security Assertions Markup Language) specification: http://www.oasis-open.org/committees/

security/#documents
20 WS-Security is being standardized at OASIS. http://www-106.ibm.com/developerworks/library/ws-secure/

http://www.oasis-open.org/committees/security/#documents
http://www.oasis-open.org/committees/security/#documents
http://www-106.ibm.com/developerworks/library/ws-secure/

Page 15 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Figure 5. Using a SOAP Header to pass security information.

 Other Middleware Capabilities
Many other middleware capabilities can be added to the WSA using SOAP headers,

such as transactions, conversations, and reliable message delivery. Figure 6 shows a

summary of the WSA functional architecture, indicating the capabilities that SOAP,

WSDL, and UDDI provide for transport, description, and discovery. The transport

delivery, context, security, and management functions are provided through SOAP

extensions.

Figure 6. Summary of the WSA Functional Architecture

Transport (HTTP)

<Body>

Signed Payload

<Header>

<Envelope>

<Security>
<UsernameToken>
<Signature>

</Security>

Transport (SOAP) Description (WSDL)

wire

transfer

message envelope

binding framework

Discovery (UDDI)

data XML/XML Schema

how

where

concrete binding

access point

what

interface/operations

messages

types

categorize

register
service types

find

service providers

taxonomies

search criteria

bind
static

dynamic

dynamic
discovery

find & bind

security

mgmt

delivery
routing/caching

reliable delivery

context

asynchronous

conversations

transactions

identity

encryption

digital signatures

instrumentation

credentials

Page 16 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

WSA Invocation Mechanisms
Unlike other SOA systems, Internet middleware does not define a specific invocation

mechanism. The core Internet middleware specifications simply define the

communication protocols. The specifics of how applications interact with SOAP and

WSDL have been left as an exercise to the application community. Any application

language can parse and process XML, so at a minimum, applications can simply

construct XML messages directly, package them in a SOAP envelope and exchange

messages. Such manual processing isn’t particularly conducive to developer

productivity, and it doesn’t exploit the fact that WSDL is machine-readable and can

be compiled into application code. Hence the application community has produced

a set of standard invocation mechanisms. Microsoft has defined a set of standard

programming interfaces and class libraries for the Visual Studio .NET languages within

the .NET framework, and the Microsoft SOAP Toolkit provides support for COM-based

applications written in Visual Basic and Visual C++. The Java Community Process has

just defined a set of standard programming interfaces for Java applications.

• JWSDL. The Java API for WSDL (JWSDL) provides an API to create, inspect, and

manipulate a WSDL document. JWSDL is used when compiling WSDL files into

client stubs and proxies, and it’s used to process a WSDL file at runtime for

dynamic binding and discovery.

• JAX-RPC. The Java API for XML based RPC (JAX-RPC), working with JWSDL,

provides support for static binding, dynamic binding, and dynamic discovery.

JAX-RPC also defines mappings between Java data types and XML types. The

JAX-RPC client APIs automatically marshal and unmarshal SOAP requests on

behalf of the client application.

o A static stub, generated by compiling either the how or the where

part of a WSDL document, provides a local object that represents

the remote service. Clients simply invoke operations on the object,

and the requests are automatically converted into SOAP requests and

routed to the service. It looks and feels very much like RMI.

o Clients can also invoke services using a JAX-RPC dynamic proxy.

Clients create a service based on the abstract interface generated

from the WSDL what part, and at runtime use the WSDL where part to

generate a dynamic proxy that implements the binding.

o Clients can also interpret a WSDL where part description at runtime

and dynamically construct a JAX-RPC call.

• JAXM. The Java API for XML Messaging (JAXM) provides an API to construct

SOAP messages without the benefit of a WSDL document. JAXM works with

profiles that define a template for a SOAP message structure, automatically

constructing the SOAP envelope, SOAP header, and SOAP body. The client

application simply adds the XML payload to the message.

Page 17 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

• SAAJ. The SOAP with Attachments API (SAAJ) provides a low level SOAP API.

Client applications can use SAAJ to manually construct and process SOAP

messages.

• JAXR. The Java API for XML Registries (JAXR) is an API that can be used

to access a variety of XML registries, including UDDI registries and ebXML

registries. Given that it is a generic registry API, the JAXR data model is

different from the UDDI data model. There are a number of other UDDI client

APIs that more closely match the UDDI data model, including two open source

projects: UDDI4J and the Systinet UDDI Client API.

Implementing Web Services Architecture
Since WSA is based on standard XML, you can implement Web services using the

pervasive XML processing technologies that come with most platforms. You can build

applications that query UDDI, parse WSDL documents, and construct SOAP requests—all

using standard XML parsers. Or you can save yourself a lot of time and effort by using a

set of Internet middleware products that implement these technologies.

Internet middleware products, sometimes referred to as a Web services platform,

provide a ready-made foundation for building and deploying Web services. The

advantage of using a Web services platform is that developers don’t need to be

concerned with constructing or interpreting SOAP messages. A developer simply writes

the application code that implements the service, and the Internet middleware does

the rest. A Web services platform generally consists of development tools, a runtime

server, and a set of management services.

• Development tools are used to create Web services, to generate WSDL

descriptions that describe those services, and to generate client proxies that

can be used to send messages to the service. Development tools may also

provide wizards to register or discover services in a UDDI registry.

• A runtime server processes SOAP messages and provides a runtime container

for Web services. The runtime server often runs within a Web or application

server. The runtime server listens for SOAP requests. For each request, the

runtime server processes the SOAP message, translates the XML data into

the service’s native language, and invokes the service. When the service

completes its work, the runtime server translates the return value into XML,

packages it into a SOAP response message, and sends the message back to the

calling application.

• Management tools provide mechanisms to deploy, undeploy, start, stop,

configure, and administer your Web services. An administrative console is

obviously useful, and other potential management services include a private

UDDI registry, a WSDL repository, a single sign-on (SSO) service, and runtime

monitoring facilities.

Page 18 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

Figure 7 shows a typical Web services platform runtime environment. Web services are

deployed within a Web services server (the runtime server). A Web services server can

run standalone, or it can execute within a Web server or application server. In a Java

environment, a Web services server normally runs as a servlet. A Web services server

consists of a SOAP message processor and a Web service container. The SOAP message

processor processes an incoming SOAP message, converts it from XML into programming

language data (e.g., Java), and routes the request to the application that implements

the service. The application usually executes within the Web service container, which

manages the lifecycle of the application. The Web services server acts as a lightweight

application server.

Figure 7. Internet middleware provides a ready-made Web services environment.

When you deploy a Web service, the Web services server usually generates a WSDL

where part document that describes the Web service. (In some cases you may have to

generate the WSDL document using the Web services development tools, or you may

have to create one manually.) You’ll want to register the Web service and its WSDL

description in a UDDI registry to help users find the service. The client application uses

UDDI to find the service and its description, and then uses the WSDL file to generate

a client proxy. At runtime the client uses the client proxy to construct and send SOAP

messages to the Web service. This illustration also shows the client and the service

using a single sign-on service for authentication.

 Platform Considerations
When choosing a Web services platform, you should ask yourself a number of questions.

• What language will you use to build your Web services?

• What language will you use to build your client applications?

• Do you have control over the client environment?

• What platform will you use to deploy your Web services?

register service

SOAP and
WSDL

processing

find
service

Authenticate

UDDI

WSDL

Web
Service

Client
WS Container

DB

Proxy

SSO

Web Services Server

SOAP
Message
Processor

Web / Application Server

Legacy

SOAP

Application
Browser
Device,
etc.

The application
that implements

the service

Web Services runtime products

Code generated by WS tools

Application code

Page 19 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

• Do you have a Web server or application server in place that you would like to

use?

• What are your performance requirements?

• What are your scalability requirements?

• What level of security will you need?

• What other requirements might affect your choice?

Keep in mind these factors when evaluating a Web services platform:

• Language support. A Web services platform generally supports a specific

language or set of languages. This factor is always your starting point. You

want to select a Web services platform that supports the programming

language you’re using.

• Platform support. A Web services platform may support a limited set of

operating systems or system configurations. You want to select a Web service

platform that supports your preferred operating system and hardware.

• Web/Application server support. A Web services platform often runs within a

Web or application server. Some platforms can run standalone, some platforms

include a Web or application server, and others may be integrated with other

application servers. Some platforms will only run in proprietary environments.

• Transport support. SOAP is designed to support multiple transports. Most Web

services platforms support HTTP and HTTPS transfer protocols. Some platforms

support other protocols, such as JMS and SMTP.

• Interoperability. One of the primary goals of Web services technology is

to support interoperability across languages, platforms, and tools. But due

to imprecision of the specifications, not all Web services platforms provide

seamless interoperability with all other Web services platforms. If you intend

to expose your Web services to clients outside of your realm of control, make

sure that you select a Web service platform that ensures easy interoperability.

• Performance. Web services communicate by exchanging XML. XML is verbose,

and it must be processed (converted to native languages) at both ends of the

wire. One of the most important factors affecting Web service performance

is the speed at which the SOAP message processor can translate XML. As

messages get larger or more complex, the translation time goes up. Run

some performance tests to ensure that the platform you choose meets your

minimum performance requirements.

• Scalability. If you intend to publish a Web service to a large audience, you

will need a Web services platform that can deliver consistent, predictable

performance as the client volume rises. Don’t forget to test for scalability.

Page 20 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

• Manageability. If you intend to use your Web services to support your business

operations, they need to be up and running when you need them to be up and

running. You will need the appropriate management facilities to monitor and

manage your Web services environment.

• Security. If you intend to make your internal business processes available

through a Web services interface, you’ll almost certainly need to set up some

form of security on those systems to protect yourself from unauthorized access

or malicious use.

Systinet WASP
Systinet Web Applications and Services Platform (WASP) is the industry’s most advanced

Web services infrastructure solution. WASP goes far beyond supplying just a basic

Web services platform. WASP provides the fastest, most scalable, most secure, most

advanced Web services solution in the industry. WASP provides everything you need to

create, deploy, and manage Web services.

The WASP product suite consists of two runtime servers, a set of development tools,

and a private UDDI registry service.

WASP Server is a portable, high-performance Web services runtime environment. WASP

Server can run standalone or it can be configured to work with a wide variety of Web

servers, application servers, and database servers. WASP Server includes comprehensive

command line development tools that provide developers with everything they need

to build and deploy Web services. The environment provides excellent interoperability

with most SOAP implementations, including Microsoft .NET and IBM Web Services Tool

Kit. The environment includes an end-to-end security framework and comprehensive

management services. The runtime is equipped with a number of built-in extensibility

hooks that permit easy enhancement and customization of the environment. Systinet

provides two versions of this product:

• WASP Server for Java
• WASP Server for C++

WASP Developer seamlessly extends the industry’s most popular Java IDEs to support

Web services. WASP Developer provides a point-and-click code generation experience

that can turn any existing Java application into a Web service. WASP Developer fully

automates the generation of all WSDL descriptions and SOAP interface code. Integrated

deployment, debugging, security, and monitoring tools give the developer complete

control from within the IDE. WASP Developer also includes UDDI wizards to help you

locate or publish Web services. Systinet provides three versions of this product:

• WASP Developer for Sun ONE Studio
• WASP Developer for Borland JBuilder
• WASP Developer for Eclipse

Page 21 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

WASP UDDI is a secure UDDI registry service designed for private use. This registry

service conforms to the UDDI V2 specification and supports access using most UDDI

client libraries, including UDDI4J, JAXR, and Systinet’s own open source UDDI client

library. WASP UDDI supports enhanced security and query facilities that address the

requirements of a private enterprise or community. WASP UDDI also provides support

for custom taxonomies that businesses can use to categorize their services.

Systinet is constantly working to enhance and extend the Web services environment. In

addition to the official product family, Systinet also provides previews of two advanced

technologies:

• WASP Secure Identity is a preview of a SAML-based single sign-on service.

Users sign on and receive a SAML authentication assertion in response. This

SAML assertion can be passed in the SOAP header in all subsequent Web

service invocations. The WASP client and server runtime services automatically

manage and interpret the SAML SOAP headers. WASP Secure Identity also works

with other Web services platforms that support SOAP header processing.

• WASP TX is a preview of a Web services transaction service. WASP TX

implements the OASIS Business Transaction Protocol (BTP21) standard, which

is designed to support loosely coupled transactions. WASP TX can be used to

coordinate transactions across any number of Web services, implemented using

any Web services platform, and it works in heterogeneous environments. WASP

TX relies on SOAP headers to convey transaction identifiers.

The key features of WASP are:

• Performance and scalability. WASP is 5-10 times faster that most other

SOAP-based solutions, and it is the only solution that offers flat, consistent

performance regardless of the number of concurrent users.

• Cross-platform support. WASP has been designed to fit seamlessly into nearly

any existing configuration. WASP supports both Java and C++ environments.

WASP can be deployed standalone, or it can be deployed in a wide assortment

of Web and application servers, including BEA WebLogic, IBM WebSphere, Sun

ONE, Oracle, Borland, Orion, J2EE Reference Implementation, JBoss, Tomcat,

Jetty, Apache Web Server, Microsoft IIS, and AOL Netscape Enterprise Server.

• Standards support. WASP supports all the latest Web services standards and

technologies, including SOAP 1.1, SOAP with Attachments, W3C SOAP 1.2,

WSDL 1.1, UDDI 1.0, UDDI 2.0, W3C XML Schema, W3C XML Signature, and

OASIS SAML.

21 The OASIS BTP specification: http://www.oasis-open.org/committees/business-transactions/#documents

http://www.oasis-open.org/committees/business-transactions/#document

Page 22 of 22Copyright 2002, Systinet Corp.

Introduction to Web Services Architecture

• Extensibility. Systinet WASP provides an extensive set of plug-in modules and

interceptors that can be used to implement automatic, transparent support

for additional middleware functionality at any stage during Web service

processing.

• Interoperability and Integration. WASP offers excellent integration facilities,

and enables seamless interoperability with .NET and codeless integration with

J2EE.

• Management. WASP provides comprehensive management facilities to monitor

and administer your distributed Web services environment.

• Security. WASP is the only Web services solution to provide an automatic,

transparent, end-to-end security framework that supports authentication,

authorization, data integrity, data confidentiality, and non-repudiation. The

WASP security framework supports multiple authentication mechanisms and

security providers.

WASP is free for evaluation, development, and testing. We encourage you to try it. Use

it to learn about Web services. Use it to implement your first proof of concept. Then

test it against other products. No other Web services platform can compare.

About Systinet
Systinet provides Web services infrastructure software. Our products make it easy for

enterprises to build, deploy, secure and manage Web services.

The Systinet WASP suite of products is based on industry-standards such as XML, SOAP,

WSDL and UDDI. WASP products are available for Java and C++, interoperate seamlessly

with other Web services implementations such as .NET, and are portable across a wide

variety of platforms and servers.

Systinet is a privately-held company with headquarters in Cambridge, Massachusetts.

Five Cambridge Center, 8th Floor

Cambridge, MA 02142

Phone: 617.868.2224

E-mail: sales@systinet.com

	Introduction to Web Services Architecture
	16 Jul 2002 Systinet Corporation
	Executive Summary
	What are Web Services?
		Distilling Common Themes
		Dissecting the Name

	Service Oriented Architecture
		SOA Functional Architecture Components
	SOA Systems
		Vertical Technologies
		Internet Middleware
	Web Services Architecture
	Alternate Discovery Mechanisms
	Extending the Basic Web Services Architecture
	WSA Invocation Mechanisms

	Implementing Web Services Architecture
	Systinet WASP

	
	Systinet Corporation. Title Page

