
Header 1

Header 1

The Evolution from
EAI to ESB
The Evolution from
EAI to ESB

IONA Technologies April 2006 IONA Technologies April 2006

The Evolution from EAI to ESB 2

Introduction
As an industry leader, IONA is at the forefront of vision and production of enterprise integration
technology. IONA's product line is constantly evolving in an ongoing effort to provide users with
state-of-the-art enterprise integration capabilities. With the popularization of Service-oriented
architecture (SOA) – an approach to system design, development and deployment that IONA’s CORBA
customers have practiced for years – a new category of integration products has emerged: the
Enterprise Service Bus (ESB).

ESB is the software industry’s name for the next generation of integration products. ESBs follow in
the footsteps of Enterprise Application Integration (EAI) by adopting some of the more effective
aspects of EAI technology while improving on EAI in other areas. Although the goals of EAI and ESB
are the same, in the area of technical architecture the two products are quite different.

The Evolution of EAI
Historically, EAI technology was the software industry’s first attempt to consolidate all of the
disparate middleware solutions in the market into a single product suite. The need for EAI arose as
companies sought to exchange information between separate silos of automation. Enterprise wide
business initiatives such as customer relationship management (CRM) and enterprise resource
planning (ERP) in the 1990’s were the primary drivers for EAI systems.

Prior to EAI, the middleware landscape was dominated by an array of protocol stacks (such as
CORBA, Tuxedo and MQ) and data formats (XML, XDR, Fixed, Variable, etc). Each of these
technologies is largely capable of satisfying the integration needs of an enterprise on its own, but only
if the selected protocol and data formats are ubiquitous in the enterprise. Unfortunately, the reality
is that large and mid-sized IT shops are inevitably heterogeneous.

Figure 1: EAI broker acts as a hub

As shown in Figure 1, EAI took a simple, brute force approach to the problem of integrating dissimilar
applications. EAI software created a hub that translates data and messages between different
applications. The EAI hub used adaptors to reformat all incoming data into a common format called
the canonical format that can be understood by the internals of the EAI hub as well as outgoing
adaptors. Each adaptor was a substantial piece of software in its own right with multiple layers

The Evolution from EAI to ESB 3

managing application specific interactions and other transport layers managing connectivity to the
application and the hub.

To implement a connection between EAI components, the EAI hub used an asynchronous message
broker, like JMS, for all of its internal integration. In addition to reformatting the message payload,
all interactions between applications went through multiple middleware transformations.
Furthermore, the quality of services the application might require such as transactional processing
and authentication/authorization security functions most often did not survive these transformations.

Figure 2: Hub constantly marshalling data

As a first generation, EAI was successful in that it provided a solution where none existed before. But
there are inherent limitations in the EAI architecture that limit its ability to provide a sustainable
enterprise-level solution. As shown in Figure 2, a central hub gives enterprises (or at least certain
individuals within the enterprise) the advantage of centralized control. But the cost of constantly
marshalling data into and out of these canonical formats creates an additional processing burden
that requires the purchase of high-end servers and administrators to manage them. While most EAI
solutions will allow you to deploy hubs in a cluster to get some additional scalability, this is only
practical and performant to a limited degree and can quickly get quite expensive as you add more
dedicated hardware.

EAI was vastly superior to hand coding every permutation of middleware and application interface in
the enterprise application portfolio. It was a step forward that worked best when the mindset and
the focus of the industry was on large-scale monolithic applications that needed to exchange data in
support of these enterprise-wide initiatives. Since the first wave of EAI tools, vendors have tried to
respond to the shortcomings of EAI in incremental ways. However, by continually adding new
features, it made the EAI systems large, inflexible and hard to manage. Over the long term, a better
technology was required if the vision of true enterprise integration was to be achieved.

The Evolution to ESB
The ESB is the next generation of enterprise integration technology, taking over where EAI leaves off.
Like EAI, ESB is a technology that allows developers to integrate disparate systems that were created

The Evolution from EAI to ESB 4

using different middleware technology. ESB further improves on its EAI predecessor by adopting a
more efficient and flexible internal architecture while leveraging the advantages of service
orientation.

The connection between SOA and ESB is important to understand. SOA represents the policies,
practices, and frameworks that enable application functionality to be provided and consumed as sets
of services. As shown in Figure 3, a service is a business-complete logical unit of work, accessible
programmatically from independently designed contexts via a direct openly documented interface.
Services can be invoked, published and discovered, and are abstracted away from the implementation
using a single, standards-based form of interface. Application software consists of services and
service consumers (clients) in loosely coupled 1-to-1 relationships.

Figure 3: Services and SOA

SOA has been the software industry’s response to the problem of managing large monolithic
applications. As one might imagine, this difference in application architecture significantly impacts
how application integration is best achieved. As shown in Figure 4, ESBs provide a backplane for
integration among service providers and service consumers. New applications developed on modern
platforms are inherently service-oriented. However, many existing enterprise applications are not
designed with SOA in mind. In these cases, the ESB should provide the ability to expose these
applications as services. Many of these EAI products are part of today’s computing fabric and will
continue to be used to solve integration problems, but for most cases moving forward the ESB has
risen as a better alternative for the following reasons:

The Evolution from EAI to ESB 5

Figure 4: ESB provides a lightweight distributed architecture

Smarter endpoints - The ESB enables architectures in which more intelligence is placed at the point
where the application interfaces with the outside world. The ESB allows each endpoint to present
itself as a service using standards such as WSDL and obviates the need for a unique interface written
for each application. Integration intelligence can be deployed natively on the end-points (clients and
servers) themselves. Canonical formats are bypassed in favor of directly formatting the payload to
the targeted format. This approach effectively removes much of the complexity inherent in EAI
products.

Centralized versus distributed – Where EAI is a purely hub and spoke approach, ESB is a lightweight
distributed architecture. A centralized hub made sense when each interaction among programs had
to be converted to a canonical format. An ESB, like IONA’s Artix, distributes much more of the
processing logic to the end points. This is analogous to the difference between a mainframe and a
modern distributed systems architecture. Hubs, like mainframes, can still be used where they make
sense architecturally, but they are an option for the developer, not a vendor-mandated requirement.

No integration stacks – As customers used EAI products to solve more problems, each vendor added
stacks of proprietary features wedded to the EAI product. Over time these integration stacks got
monolithic and require deep expertise to use. ESBs, in contrast, are a relatively thin layer of software
to which other processing layers can be applied using open standards. For example, if an ESB user
wants to deploy a particular business process management tool, it can be easily integrated with the
ESB using industry standard interfaces such as BPEL for coordinating business processes.

The immediate short-term advantage of the ESB approach is that it achieves the same overall effect
as the EAI approach, but at a much lower total-cost-of-ownership. These savings are realized not
only through reduced hardware and software expenses, but also via labor savings that are realized by
using a framework that is distributed and flexible. In addition, an ESB can be deployed incrementally
to reduce disruption and migration costs.

The Evolution from EAI to ESB 6

Artix - The Extensible ESB
IONA offers an ESB for distributed and flexible integration, that also provides owners of EAI systems
an incremental solution to migrate to a SOA gradually.

The ESB is an architectural step forward, but some of today's ESB products lack all the capabilities
that large enterprises require. The vast majority of these products depend on a single protocol (e.g.,
SOAP), programming language (e.g., Java), messaging transport (e.g., JMS), or deployment
architecture (e.g., J2EE application server) that limits their ability to bridge multiple platforms. In
addition, many ESBs are marketed by small startups with no experience in complex enterprise
integration projects.

Artix is an extensible Enterprise Service Bus (ESB) that dramatically reduces operating costs for
organizations with complex and heterogeneous IT systems by deploying, managing and securing a
service-oriented architecture (SOA) without requiring a centralized hub. Artix uses distributed
computing technology to leverage and modernize existing middleware investments to help the Global
2000 deliver products and services to their customers faster and more efficiently. Artix is

• For incremental SOA adoption – Artix creates a network of smart, standards-based endpoints
using existing infrastructure so enterprises can begin with low-risk, high-value SOA projects
and gradually add services as needed

• Dynamic and adaptable – Artix endpoints are independently configurable so services can be
extended, modified and hot deployed without disrupting the rest of the enterprise

• Technology-neutral – Artix is a multi-platform and multi-protocol solution that connects
diverse and lightweight endpoints without an expensive and cumbersome centralized server,
and without promoting vendor lock-in

IONA has a proven track record of delivering mission-critical infrastructure, and has built many of the
earliest and largest SOAs for Global 2000 customers, including Credit Suisse, BellSouth, Raymond
James & Associates, Marconi, and Deutsche Post (DHL).

The Evolution from EAI to ESB 7

Figure 5: Artix distributed architecture

The Artix architecture, as shown in Figures 5 and 6, is based on a highly efficient microkernel and a
series of plug-ins that allow it to adapt to any combination of middleware and application
architecture. This includes adapting to new transport protocols, payload formats, security models,
session management, transaction support and resiliency requirements. For integration systems, the
Artix plug-in approach to extensibility has two important effects:

� Intricate or special purpose integration requirements can be addressed with new, specially
designed plug-ins. This plug-in approach allows the integration runtime to stay small and
fast, while addressing a broad range of integration issues.

� After the integration has been deployed, changes made to one of the application interfaces,
or extensible endpoints, can be made without disrupting the service provided by that
endpoint.

The Evolution from EAI to ESB 8

Figure 6. Artix Extensible Endpoint

Changes in the underlying architecture and infrastructure of the application are transparent to the
other participants in the integration. Other features that further define the Artix product are its
support for:

� High performance and small footprint integration with none of the traditional excess network
data hops or transformation overhead

� Protocols and data formats of the dominant middleware and infrastructure - including the
SOA platforms of IBM, BEA and Microsoft

� Standard application platforms of existing enterprise systems: mainframe transactions
(IMS/CICS), C++ client/server apps and middleware platforms such as CORBA or BEA's
Tuxedo

� Application styles of existing systems, including publish/subscribe, request/response, and
asynchronous applications

� Emerging security standards of SOA platforms and Web services (WS-Security, Kerberos
Tokens, etc.) and the legacy security models of existing enterprise systems

� Management via existing enterprise management infrastructures, including IBM Tivoli, CA
Unicenter and HP OpenView

� Integration with run-time and development tools of the leading SOA platform suites

Artix users find that its extensibility allows them to leverage and extend their existing systems in
place, without having to modify them. It allows the building of secure, fault-tolerant systems that are
easier to manage and deploy. And the product's extensibility promotes a small footprint, very high
performance integration solution, which in turn meets enterprise throughput requirements with
significantly reduced overhead.

The Evolution from EAI to ESB 9

Summary
As with the previous evolution from hand coding to EAI technologies, the evolution of middleware
from EAI to ESB is putting greater power and flexibility in the hands of developers and users while
reducing the overall costs of building systems. In many ways, the evolution from EAI to ESB has the
same motivations as the evolution from monolithic enterprise applications to service-oriented
applications. In both cases, users have hit a wall of complexity in which a simpler more flexible
approach is essential. IONA is committed to providing the industry with both the thought leadership
and product leadership this evolution requires.

Global 2000 companies, with their heterogeneous systems and application silos, are using Artix to
reduce the complexity within their enterprises. IONA, with its history of delivering high performance,
mission-critical applications for over ten years is helping these companies repurpose their current
investments and incrementally move towards an open architecture.

IONA customers - including BellSouth, AT&T, Marconi, and DHL (Deutsche Post) – use an extensible
ESB to service-enable existing systems and establish a scalable, adaptable, SOA architecture. They
chose Artix for its broad platform support, extensibility, and enterprise quality of service, and today
they are building new business applications and process flows on common platforms such as
Microsoft’s .NET Framework, IBM’s WebSphere, or BEA WebLogic.

In looking to the future, IONA's customers can count on IONA as a business partner that will provide
them with the best the industry has to offer, today and tomorrow.

………

IONA Technologies PLC IONA Technologies Inc. IONA Technologies Japan Ltd
The IONA Building 200 West Street Akasaka Sanchome Building 7/F
Shelbourne Road Waltham MA 02451 3-21-16 Akasaka
Dublin 4 USA Minato-ku Tokyo
Ireland Japan
Phone +353 1 637 2000 Phone +1 781 902 8000 Phone +813 3560 5611
Fax +353 1 637 2888 Fax +1 781 902 8001 Fax +813 3560 5612
Support: support@iona.com Training: training@iona.com Sales: sales@iona.com
WWW: www.iona.com

Artix, Artix Mainframe, Adaptive Runtime Technology are Trademarks of IONA Technologies PLC. Orbix, Orbix 2000 Notification, and Orbix/E are Registered Trademarks
of IONA Technologies PLC.

COPYRIGHT NOTICE. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, photo- copying, recording
or otherwise, without prior written consent of IONA Technologies PLC.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

………

	The Evolution from EAI to ESB
	9 Aug 2006 IONA Technologies
	Introduction
	The Evolution of EAI
	The Evolution to ESB
	Artix - The Extensible ESB
	Summary

	
	IONA Titlte Page

